UNIVERSAL PROGRAMMABLE CHAOS GENERATOR: DESIGN AND IMPLEMENTATION ISSUES

2010 ◽  
Vol 20 (02) ◽  
pp. 419-435 ◽  
Author(s):  
RECAI KILIC

Chaos generators are generally designed and implemented by using analog circuit design techniques. Analog implementations require a variety of circuitry that comprises different passive and active electronic components like individual op-amps, comparators, analog multipliers, trigonometric function generators. Anyone who wants to experimentally investigate different structurally chaotic systems has to provide a significant amount of circuit hardware. This process may be hard and time consuming. At this stage, the question to be asked: Is there a unique analog component for implementing a universal analog chaos generator which is capable of generating the chaotic signals of nearly all analog-based chaotic systems. Fortunately, we can now answer this question positively. This analog device is FPAA (Field-Programmable Analog Array). FPAA is the analog equivalent of the FPGA (Field-Programmable Gate Array) used as programmable device in digital signal processing. FPAA is a programmable device for implementing a rich variety of systems including analog functions via dynamic reconfiguration. FPAA can be configured in real time which allows the designers to modify the design or make completely new design in real time. In this paper, we aim to show how FPAA device can be used as universal device for design and implementation of programmable analog chaos generators. For this purpose, we will introduce three FPAA-based design examples: autonomous Chua's circuit, nonautonomous MLC (Murali–Lakshmanan–Chua) circuit and a chaotic system based on a PLL (Phase Locked Loop) model.

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 437
Author(s):  
Han-Ping Hu ◽  
Xiao-Hui Liu ◽  
Fei-Long Xie

Time-delay chaotic systems can have hyperchaotic attractors with large numbers of positive Lyapunov exponents, and can generate highly stochastic and unpredictable time series with simple structures, which is very suitable as a secured chaotic source in chaotic secure communications. But time-delay chaotic systems are generally designed and implemented by using analog circuit design techniques. Analog implementations require a variety of electronic components and can be difficult and time consuming. At this stage, we can now solve this question by using FPAA (Field-Programmable Analog Array). FPAA is a programmable device for implementing multiple analog functions via dynamic reconfiguration. In this paper, we will introduce two FPAA-based design examples: An autonomous Ikeda system and a non-autonomous Duffing system, to show how a FPAA device is used to design programmable analog time-delay chaotic systems and analyze Shannon entropy and Lyapunov exponents of time series output by circuit and simulation systems.


2012 ◽  
Vol 571 ◽  
pp. 534-537
Author(s):  
Bao Feng Zhang ◽  
De Hu Man ◽  
Jun Chao Zhu

The article proposed a new method for implementing linear phase FIR filter based on FPGA. For the key to implementing the FIR filter on FPGA—multiply-add operation, a parallel distributed algorithm was presented, which is based on LUT. The designed file was described with VHDL and realized on Altera’s field programmable gate array (FPGA), giving the design method. The experimental results indicated that the system can run stably at 120MHz or more, which can meet the requirements of signal processing for real-time.


2014 ◽  
Vol 60 (1) ◽  
pp. 8-19 ◽  
Author(s):  
Andrzej Malcher ◽  
Piotr Falkowski

Abstract The aim of this paper is to present an overview of a new branch of analog electronics represented by analog reconfigurable circuits. The reconfiguration of analog circuits has been known and used since the beginnings of electronics, but the universal reconfigurable circuits called Field Programmable Analog Arrays (FPAA) have been developed over the last two decades. This paper presents the classification of analog circuit reconfiguration, examples of FPAA solutions obtained as academic projects and commercially available ones, as well as some application examples of the dynamic reconfiguration of FPAA


2011 ◽  
Vol 18 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Piotr Falkowski ◽  
Andrzej Malcher

Dynamically Programmable Analog Arrays in Acoustic Frequency Range Signal ProcessingField programmable analog arrays (FPAA), thanks to their flexibility and reconfigurability, give the designers quite new possibilities in analog circuit design. The number of both academic projects on FPAA and applications of commercially available programmable devices is still growing. This paper explores the properties and parameters of two most popular FPAA circuits: the AnadigmVortex AN221E04 and AnadigmApex AN231E04 from the Anadigm company. The research conducted by the authors led to the discovery of some undocumented features of these devices. Several applications for audio processing were built and tested. The results show that these circuits can be used in medium-demanding audio applications. Thanks to dynamic reconfigurability, they also allow to build an universal analog audio signal processor. These circuits can also act as a versatile platform for rapid prototyping and educational purposes.


Author(s):  
Kenan Altun

In this paper, fractional-order chaotic systems in an analog-based platform are realized using field programmable analog arrays (FPAA) hardware. With the help of this work, we aim to increase the complexity of chaotic systems. Approximated transfer functions in frequency domain are obtained by analyzing different values of fractional-order integrator with the Charef approximation method. In this study, fractional-order numerical calculation of Rssler and Sprott type-H chaotic systems is carried out. MATLAB Simulink model for chaotic systems that satisfy the conditions of chaos in the boundaries of fractional order value is schematically presented. Moreover, CAM designs and analysis that facilitate the realization of fractional-order transfer functions in FPAA platforms are introduced. The analog-based FPAA experimental and numerical outcomes for fractional order chaotic systems are demonstrated. The comparison of the results obtained in the numerical analysis and simulation study with the experimental results is given. This study confirms that the unpredictability of the chaos carrier signals realized by digital-based can be increased with analog-based FPAA hardware and fractional-order structures so as to provide safer transfer of information signals.


Sign in / Sign up

Export Citation Format

Share Document