GENERATION AND CONTROL ANALYSIS OF A MULTISTATE INTERMITTENT SYSTEM

2010 ◽  
Vol 20 (11) ◽  
pp. 3663-3671 ◽  
Author(s):  
GUANGMING XIE ◽  
YIYANG YU

In this paper, a Rössler-driving multistate intermittency is generated by a nonlinear system that contains controllable invariant subspaces. Intermittency-induced multiscroll attractor is found, and moreover, the control analysis is discussed, such as the number of attractors and the distance between laminar states can be easily adjusted by tuning some system parameters. The statistic behavior and power law distribution are also discussed, which reveal the regularities in the complex dynamics.

2020 ◽  
Author(s):  
Francesca Bertacchini ◽  
Eleonora Bilotta ◽  
Pietro S. Pantano

The behaviour of SARS-CoV-2 virus is certainly one of the most challenging in contemporary world. Although the mathematical modelling of the virus has made relevant contributions, the unpredictable behaviour of the virus is still not fully understood. To identify some aspects of the virus elusive behaviour, we focused on the temporal characteristics of its course. We have analysed the latency trends the virus has realized worldwide, the outbreak of the hot spots, and the decreasing trends of the pandemic. We found that the spatio-temporal pandemic dynamics shows a power law distribution. As with physical systems, these changes in the pandemic's course, which we have called transitional stages of contagion, highlight shared characteristics in many countries. The main results of this work is that the pandemic progression rhythms have been clearly identified for each country, providing the processes and the stages at which the virus develops, thus giving important information on the activation of containment and control measures.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Bo Yan ◽  
Shaojie Wang ◽  
Shaobo He

Chaos and control analysis for the fractional-order nonlinear circuits is a recent hot topic. In this study, a fractional-order model is deduced from a Buck-Boost converter, and its discrete solution is obtained based on the Adomian decomposition method (ADM). Chaotic dynamic characteristics of the fractional-order system are investigated by the bifurcation diagram, 0-1 test, spectral entropy (SE) algorithm, and NIST test. Meanwhile, the control of the fractional-order Buck-Boost model is discussed through two different ways, namely, the intensity feedback and the hard limiter control. Specifically, the hard limiter control can be realized using a current limiter in the circuit, where the current limiter device is applied to control the branch current. The results show that the proposed fractional-order system has complex dynamic behaviors and potential application values in the engineering field.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ghislain Romaric Meleu ◽  
Paulin Yonta Melatagia

AbstractUsing the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.


2021 ◽  
Author(s):  
David A Garcia ◽  
Gregory Fettweis ◽  
Diego M Presman ◽  
Ville Paakinaho ◽  
Christopher Jarzynski ◽  
...  

Abstract Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs—one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ching Hua Lee ◽  
Justin C. W. Song

AbstractTopological boundary modes can occur at the spatial interface between a topological and gapped trivial phase and exhibit a wavefunction that exponentially decays in the gap. Here we argue that this intuition fails for a temporal boundary between a prequench topological phase that possess topological boundary eigenstates and a postquench gapped trivial phase that does not possess any eigenstates in its gap. In particular, we find that characteristics of states (e.g., probability density) prepared in a topologically non-trivial system can persist long after it is quenched into a gapped trivial phase with spatial profiles that appear frozen over long times postquench. After this near-stationary window, topological boundary mode profiles decay albeit, slowly in a power-law fashion. This behavior highlights the unusual features of nonequilibrium protocols enabling quenches to extend and control localized states of both topological and non-topological origins.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Kai Zhao ◽  
Mirco Musolesi ◽  
Pan Hui ◽  
Weixiong Rao ◽  
Sasu Tarkoma

Sign in / Sign up

Export Citation Format

Share Document