CIPHER SYSTEMS BASED ON CONTROLLED EXACT CHAOTIC MAPS

2010 ◽  
Vol 20 (12) ◽  
pp. 4039-4053 ◽  
Author(s):  
ALI KANSO

In this paper, we present a class of chaotic clock-controlled cipher systems based on two exact chaotic maps, where each map is capable of generating exact chaotic time series of the logistic map. This class is designed in such a way that one map controls the iterations of the second map. The suggested technique results in generating orbits possessing long cycle length and high level of security from the two periodic exact maps. In the first part of this paper, two keystream generators based on two exact chaotic logistic maps are suggested for use in cryptographic applications. The necessary conditions to generate orbits with guaranteed long enough cycle length are established. Furthermore, the generated keystreams are demonstrated to possess excellent randomness properties. In the second part, we suggest a clock-controlled encryption scheme related to Baptista's scheme and based on two exact chaotic logistic maps. This technique results in increasing the size of the key space, and hence may increase the security level against some existing cryptanalytic attacks. Furthermore, it leads to reducing the size of the ciphertext file and propably increasing the encryption speed.

2015 ◽  
Vol 25 (09) ◽  
pp. 1550124 ◽  
Author(s):  
Lequan Min ◽  
Xiuping Yang ◽  
Guanrong Chen ◽  
Danling Wang

This study uses seven four-dimensional four-variable polynomial chaotic maps without equilibria in combination with generalized chaos synchronization (GCS) theorem to construct eight-dimensional bidirectional discrete generalized chaos synchronization (8DBDGCS) systems without equilibria. By combining the 8DBDGCS system with the GCS theorem, a 12-dimensional GCS system is designed. Numerical simulation verifies the chaotic dynamics of the 12-dimensional GCS system, which is used to design a 216-word chaotic pseudorandom number generator (CPRNG). The SP-8002 test suite is used to test the randomness of four 100-key streams consisting of 1 000 000 bits generated respectively by the CPRNG, a six-dimensional GCS-based CPRNG, the RC4 algorithm and the ZUC algorithm. The results show that the randomness performances of the two CPRNGs are promising, suggesting that there are no significant correlations between the key stream and the perturbed key streams generated via the 216-word CPRNG. In addition, theoretically the key space of the CPRNG is larger than 21195. The CPRNG is used with an avalanche-encryption scheme to encrypt an RGB balloon image, demonstrating that the CPRNG is able to generate the avalanche effects which are similar to those generated via ideal 216-word CPRNGs.


2015 ◽  
Vol 76 (1) ◽  
pp. 607-629 ◽  
Author(s):  
Majid Mollaeefar ◽  
Amir Sharif ◽  
Mahboubeh Nazari

2019 ◽  
Vol 9 (22) ◽  
pp. 4854
Author(s):  
Li-Lian Huang ◽  
Shi-Ming Wang ◽  
Jian-Hong Xiang

This paper proposes a novel tweak-cube color image encryption scheme jointly manipulated by chaos and hyper-chaos. One-dimensional (1D) chaotic maps are effortless to operate, but the key space is relatively small. The hyperchaotic system has complex dynamics properties, which are capable of compensating for the defects of 1D chaotic maps. Thus, we first raise an improved 1D chaotic map with an increased key space. Then, we associate it with a four-dimensional (4D) hyperchaotic system to generate the key streams and further rotate and shift the rows and columns of each component of Red (R), Green (G), and Blue (B) for the color image. The permuting mode is to disturb the original position of the pixels by mimicking the way of twisting the Rubik’s cube. Moreover, the key stream updated by the plain images is also utilized for diffusion and scramble at the bit level. As a consequence, our cryptosystem enhances the security without at the expense of increasing time cost.


2014 ◽  
Vol 7 (4) ◽  
pp. 65 ◽  
Author(s):  
Obaida M. Al-hazaimeh

In this paper, an implementation of digital image encryption scheme based on one dimensional logistic map is proposed. The chaotic cryptography technique concentrates in general on the symmetric key cryptographic technique. In the proposed algorithm, a random key table lookup criterion was combined with a one-dimensional chaotic map were used for high degree 2-stage security image encryption while maintaining acceptable overhead delay time. The proposed algorithm is based on image row shuffling and pixel-wise XOR encryption. To increase the security of row shuffling variable rotation and inversion were applied to each shuffled row, based on the difference between old and new row location. The experimental results showed that the proposed algorithm is effective and applicable. The combination of logistic map and key table lookup shows advantages of large random key space and high-level of security. The resulting cipher image is suitable for practical use in secure image storing and transmission.


2004 ◽  
Vol 14 (10) ◽  
pp. 3607-3611 ◽  
Author(s):  
SHUNJI KAWAMOTO ◽  
TAKESHI HORIUCHI

It is said that the numerical generation of exact chaotic time series by iterating, for example, the logistic map, will be impossible, because chaos has a high dependency on initial values. In this letter, an algorithm to generate them without the accumulation of inevitable round-off errors caused by the iteration is proposed, where rational numbers are introduced. Also, it is shown that the period of the chaotic time series depends on the rational numbers including large prime numbers, which are fundamentally related to the Mersenne and the Fermat prime ones. Since the time series are numerically regenerated by the proposed algorithm in an usual computer environment, it could be applied to cryptosystems which do not need the synchronization, and have a large key-space by using large prime numbers.


2014 ◽  
Vol 998-999 ◽  
pp. 797-801
Author(s):  
Peng Cheng ◽  
Huai Xun Zhao

This paper introduces a novel image encryption scheme based on chaotic maps and toggle cellular automata (TCA). In confusion stage, the proposed scheme utilizes logistic map to construct a nonlinear sequence for scrambling the plain-image. Then in diffusion stage, TCA is constructed by setting up the inversion rule and the image which has been processed by chaotic sequence is encryption again by using the TCA iteration method. Theoretical analysis and experimental results demonstrate the proposed algorithm achieves a high security level and processes good performance against common attacks like differential attack and statistical attack.


2014 ◽  
Vol 28 (07) ◽  
pp. 1450024 ◽  
Author(s):  
PI LI ◽  
XING-YUAN WANG ◽  
HONG-JING FU ◽  
DA-HAI XU ◽  
XIU-KUN WANG

The high-dimensional chaotic systems (HDCS) have a lot of advantages as more multifarious mechanism, greater the key space, more ruleless for the time series of the system variable than with the low-dimensional chaotic systems (LDCS), etc. Thus, a novel encryption scheme using Lorenz system is suggested. Moreover, we use substitution–diffusion architecture to advance the security of the scheme. The theoretical and experimental results show that the suggested cryptosystem has higher security.


2008 ◽  
Vol 18 (01) ◽  
pp. 251-261 ◽  
Author(s):  
SOHRAB BEHNIA ◽  
AFSHIN AKHSHANI ◽  
HADI MAHMODI ◽  
AMIR AKHAVAN

In recent years, a growing number of cryptosystems based on chaos have been proposed. But most of them have encountered many problems such as small key space and weak security. In the present paper, a new kind of chaotic cryptosystem based on Composition of Trigonometric Chaotic Maps is proposed. These maps which are defined as ratios of polynomials of degree N, have interesting properties such as invariant measure, ergodicity, variable chaotic region with respect to the control parameters and ability to construct composition form of maps. We have used a composition of chaotic map to shuffle the position of image pixels. Another composition of chaotic map is used in diffusion process. According to the performed analysis, the introduced algorithm can satisfy the required performances such as high level security, large key space and the acceptable encryption speed.


Cryptography ◽  
2020 ◽  
pp. 39-47
Author(s):  
Sugandha Agarwal ◽  
O.P. Singh ◽  
Deepak Nagaria

In this world of Advanced Technology, the Biometrics are proved to be a significant method for user identification. However, the use of biometric is not new, but these days, with the increase in multimedia applications, it has gained its popularity in analysing human characteristics for security purposes. Biometric Encryption using Chaos Algorithm is a technique used to make it more convenient to the user and to provide high level security. The most prominent physical biometric patterns investigated for security purposes are the fingerprint, hand, eye, face, and voice. In the proposed image encryption scheme, an external secret key of 160-bit is used. The initial conditions for the logistic map are derived using the external secret key. The results obtained through experimental analysis provide an efficient and secure way for real-time image encryption and transmission.


2017 ◽  
Vol 26 (07) ◽  
pp. 1750122 ◽  
Author(s):  
Fatma Sbiaa ◽  
Sonia Kotel ◽  
Medien Zeghid ◽  
Rached Tourki ◽  
Mohsen Machhout ◽  
...  

Given the increasing complexity of cryptographic devices, testing their security level against existing attacks requires a fast simulation environment. SystemC is a standard language that is widely used for the modeling and the verification of complex systems. It is a promising candidate in Electronic System Level (ESL) which allows models to reach higher simulation speed. Accordingly, the Advanced Encryption Standard (AES) is one of the most known block ciphers. It is widely used in various applications in order to secure the sensitive data. It is considered to be secure. Still, some issues lie in the used key and the S-Box. This paper presents a SystemC implementation of a chaos-based crypto-processor for the AES algorithm. The design of the proposed architecture is studied using the SystemC tools. The proposed correction approach exploits the chaos theory properties to cope with the defaulting parameters of the AES algorithm. Detailed experimental results are given in order to evaluate the security level and the performance criteria. In fact, the proposed crypto-system presents numerous interesting features, including a high security level, a pixel distributing uniformity, a sufficiently large key-space with improved key sensitivity, and an acceptable speed.


Sign in / Sign up

Export Citation Format

Share Document