Hopf Bifurcation in Two Groups of Delay-Coupled Kuramoto Oscillators

2015 ◽  
Vol 25 (10) ◽  
pp. 1550129 ◽  
Author(s):  
Yuxiao Guo ◽  
Weihua Jiang

Hopf bifurcation in two groups of Kuramoto's phase oscillators with delay-coupled interactions is investigated on the Ott–Antonsen's manifold. We find that the reduced delay differential system undergoes Hopf bifurcations when the coupling strength between two groups exceeds some critical values. With the increasing of time delay, stability switches are observed which leads to the synchrony switches for the Kuramoto system. The direction of Hopf bifurcation and the stability of bifurcating periodic solutions are investigated by deriving the normal forms on the center manifold. With respect to the Kuramoto system, simulations are performed to support our analytic results.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xinhong Pan ◽  
Min Zhao ◽  
Chuanjun Dai ◽  
Yapei Wang

A delay differential system is investigated based on a previously proposed nutrient-phytoplankton model. The time delay is regarded as a bifurcation parameter. Our aim is to determine how the time delay affects the system. First, we study the existence and local stability of two equilibria using the characteristic equation and identify the condition where a Hopf bifurcation can occur. Second, the formulae that determine the direction of the Hopf bifurcation and the stability of periodic solutions are obtained using the normal form and the center manifold theory. Furthermore, our main results are illustrated using numerical simulations.


2009 ◽  
Vol 02 (03) ◽  
pp. 321-328 ◽  
Author(s):  
XIAOFANG LI ◽  
RONGNING QU ◽  
ENMIN FENG

Introducing discrete time delay into the model for producing 1, 3-propanediol by microbial continuous fermentation, the stability and Hopf bifurcation of a delay differential system for microorganisms in continuous culture are considered in this paper, including the changing regularity of bifurcation value and oscillating period. Algebraic criteria for absolute stability, as well as the transversality condition for Hopf bifurcation of this kind system are obtained. Explicit algorithm for determining the direction of Hopf bifurcation and the stability of periodic solution is derived, using the theory of normal form and center manifold. Finally, numerical simulations show the effectiveness of our results. The pictures of periodic solutions and phase planes with specified parameters suggest that our results can qualitatively describe oscillatory phenomena occurring in experiments.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yuanyuan Chen ◽  
Ya-Qing Bi

A delay-differential modelling of vector-borne is investigated. Its dynamics are studied in terms of local analysis and Hopf bifurcation theory, and its linear stability and Hopf bifurcation are demonstrated by studying the characteristic equation. The stability and direction of Hopf bifurcation are determined by applying the normal form theory and the center manifold argument.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Fengying Wei ◽  
Lanqi Wu ◽  
Yuzhi Fang

A kind of delayed predator-prey system with harvesting is considered in this paper. The influence of harvesting and delay is investigated. Our results show that Hopf bifurcations occur as the delayτpasses through critical values. By using of normal form theory and center manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are obtained. Finally, numerical simulations are given to support our theoretical predictions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianming Zhang ◽  
Lijun Zhang ◽  
Chaudry Masood Khalique

The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao ◽  
Jinde Cao

The local reaction-diffusion Lengyel-Epstein system with delay is investigated. By choosingτas bifurcating parameter, we show that Hopf bifurcations occur when time delay crosses a critical value. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical simulations are performed to support the analytical results and the chaotic behaviors are observed.


2013 ◽  
Vol 18 (3) ◽  
pp. 377-397
Author(s):  
Xiang Wu ◽  
Chunrui Zhang

This work explores a coupled Oregonator model. By analyzing the associated characteristic equation, linear stability is investigated and Hopf bifurcations are demonstrated, as well as the stability and direction of the Hopf bifurcation are determined by employing the normal form method and the center manifold reduction. We also discussed the Z2 equivariant property and the existence of multiple periodic solutions. Numerical simulations are presented to illustrate the results in Section 5.


2016 ◽  
Vol 26 (03) ◽  
pp. 1650047 ◽  
Author(s):  
Jiantao Zhao ◽  
Junjie Wei

A reaction–diffusion plankton system with delay and quadratic closure term is investigated to study the interactions between phytoplankton and zooplankton. Sufficient conditions independent of diffusion and delay are obtained for the persistence of the system. Our conclusions show that diffusion can induce Turing instability, delay can influence the stability of the positive equilibrium and induce Hopf bifurcations to occur. The computational formulas which determine the properties of bifurcating periodic solutions are given by calculating the normal form on the center manifold, and some numerical simulations are carried out for illustrating the theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Gang Zhu ◽  
Junjie Wei

The dynamics of a system of two semiconductor lasers, which are delay coupled via a passive relay within the synchronization manifold, are investigated. Depending on the coupling parameters, the system exhibits synchronized Hopf bifurcation and the stability switches as the delay varies. Employing the center manifold theorem and normal form method, an algorithm is derived for determining the Hopf bifurcation properties. Some numerical simulations are carried out to illustrate the analysis results.


2019 ◽  
Vol 17 (1) ◽  
pp. 962-978
Author(s):  
Rina Su ◽  
Chunrui Zhang

Abstract In this paper, we consider a class of delay coupled Lotka-Volterra ring systems. Based on the symmetric bifurcation theory of delay differential equations and representation theory of standard dihedral groups, properties of phase locked periodic solutions are given. Moreover, the direction and the stability of the Hopf bifurcation periodic orbits are obtained by using normal form and center manifold theory. Finally, the research results are verified by numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document