scholarly journals Locating and Stabilizing Unstable Periodic Orbits Embedded in the Horseshoe Map

2021 ◽  
Vol 31 (04) ◽  
pp. 2150110
Author(s):  
Yuu Miino ◽  
Daisuke Ito ◽  
Tetsushi Ueta ◽  
Hiroshi Kawakami

Based on the theory of symbolic dynamical systems, we propose a novel computation method to locate and stabilize the unstable periodic points (UPPs) in a two-dimensional dynamical system with a Smale horseshoe. This method directly implies a new framework for controlling chaos. By introducing the subset based correspondence between a planar dynamical system and a symbolic dynamical system, we locate regions sectioned by stable and unstable manifolds comprehensively and identify the specified region containing a UPP with the particular period. Then Newton’s method compensates the accurate location of the UPP with the regional information as an initial estimation. On the other hand, the external force control (EFC) is known as an effective method to stabilize the UPPs. By applying the EFC to the located UPPs, robust controlling chaos is realized. In this framework, we never use ad hoc approaches to find target UPPs in the given chaotic set. Moreover, the method can stabilize UPPs with the specified period regardless of the situation where the targeted chaotic set is attractive. As illustrative numerical experiments, we locate and stabilize UPPs and the corresponding unstable periodic orbits in a horseshoe structure of the Duffing equation. In spite of the strong instability of UPPs, the controlled orbit is robust and the control input retains being tiny in magnitude.

2014 ◽  
Vol 24 (06) ◽  
pp. 1450077 ◽  
Author(s):  
Matthew A. Morena ◽  
Kevin M. Short

We report on the tendency of chaotic systems to be controlled onto their unstable periodic orbits in such a way that these orbits are stabilized. The resulting orbits are known as cupolets and collectively provide a rich source of qualitative information on the associated chaotic dynamical system. We show that pairs of interacting cupolets may be induced into a state of mutually sustained stabilization that requires no external intervention in order to be maintained and is thus considered bound or entangled. A number of properties of this sort of entanglement are discussed. For instance, should the interaction be disturbed, then the chaotic entanglement would be broken. Based on certain properties of chaotic systems and on examples which we present, there is further potential for chaotic entanglement to be naturally occurring. A discussion of this and of the implications of chaotic entanglement in future research investigations is also presented.


1997 ◽  
Vol 07 (04) ◽  
pp. 897-902
Author(s):  
Jong Cheol Shin ◽  
Sook-Il Kwun ◽  
Youngtae Kim

We have designed coupled diode resonators to study the effect of small perturbations due to weak symmetric coupling on chaotic dynamics. Our experiment clearly demonstrated that chaos of the diode resonators was suppressed so that chaotic motions were converted into periodic ones with small modifications to the attractor when an appropriate coupling signal perturbed the diode resonators. Many unstable periodic orbits were stabilized and they were very stable depending on the dynamical properties of the coupling signals. Our results suggest that coupling of signals belonging to the same class is effective in controlling chaos.


2004 ◽  
Vol 14 (07) ◽  
pp. 2375-2380 ◽  
Author(s):  
F. A. BOROTTO ◽  
A. C.-L. CHIAN ◽  
E. L. REMPEL

A numerical study of an interior crisis of a large-amplitude Alfvén wave described by the driven-dissipative derivative nonlinear Schrödinger equation, in the low-dimensional limit, is reported. An example of Alfvén interior crisis is characterized using the unstable periodic orbits and their associated invariant stable and unstable manifolds in the Poincaré plane. We suggest that this type of chaotic transition can be observed in space and laboratory plasmas.


2002 ◽  
Vol 12 (05) ◽  
pp. 1111-1119 ◽  
Author(s):  
TAKUJI KOUSAKA ◽  
TETSUSHI UETA ◽  
HIROSHI KAWAKAMI

In this paper, we propose a general method for controlling chaos in a nonlinear dynamical system containing a state-dependent switch. The pole assignment for the corresponding discrete system derived from such a nonsmooth system via Poincaré mapping works effectively. As an illustrative example, we consider controlling the chaos in the Rayleigh-type oscillator with a state-dependent switch, which is changed by the hysteresis comparator. The unstable one- and two-periodic orbits in the chaotic attractor are stabilized in both numerical and experimental simulations.


2015 ◽  
Vol 25 (02) ◽  
pp. 1530003 ◽  
Author(s):  
Tomoyuki Miyaji ◽  
Hisashi Okamoto ◽  
Alex D. D. Craik

A three-dimensional autonomous dynamical system proposed by Pehlivan is untypical in simultaneously possessing both unbounded and chaotic solutions. Here, this topic is studied in some depth, both numerically and analytically. We find, by standard methods, that four-leaf chaotic orbits result from a period-doubling cascade; we identify unstable fixed points and both stable and unstable periodic orbits; and we examine how initial data determines whether orbits approach infinity or a stable periodic orbit. Further, we describe and apply a strict numerical verification method that rigorously proves the existence of sequences of period doublings.


1993 ◽  
Vol 47 (4) ◽  
pp. R2492-R2495 ◽  
Author(s):  
Serge Bielawski ◽  
Dominique Derozier ◽  
Pierre Glorieux

Sign in / Sign up

Export Citation Format

Share Document