New Characteristic Relations in Type-II and III Intermittency

1997 ◽  
Vol 07 (04) ◽  
pp. 831-836 ◽  
Author(s):  
M. O. Kim ◽  
Hoyun Lee ◽  
Chil-Min Kim ◽  
Hyun-Soo Pang ◽  
Eok-Kyun Lee ◽  
...  

We obtained new characteristic relations in Type-II and III intermittencies according to the reinjection probability distribution. When the reinjection probability distribution is fixed at the lower bound of reinjection, the critical exponents are -1, as is well known. However when the reinjection probability distribution is uniform, the critical exponent is -1/2, and when it is of form [Formula: see text], -3/4. On the other hand, if the square root of Δ, which represents the lower bound of reinjection, is much smaller than the control parameter ∊, i.e. ∊ ≫ Δ1/2, critical exponent is always -1, independent of the reinjection probability distribution. Those critical exponents are confirmed by numerical simulation study.

2020 ◽  
Vol 47 (4) ◽  
pp. 371-385
Author(s):  
Kaisheng Zhang ◽  
Chaofan Ma ◽  
Baocheng Zhang ◽  
Bo Zhao ◽  
Qiang Wang

2020 ◽  
Vol 10 (1) ◽  
pp. 400-419 ◽  
Author(s):  
Sihua Liang ◽  
Patrizia Pucci ◽  
Binlin Zhang

Abstract In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, $$\begin{array}{} \displaystyle -\left(a + b\int\limits_{\mathbb{R}^N} |\nabla u|^2 dx\right){\it\Delta} u = \alpha k(x)|u|^{q-2}u + \beta\left(\,\,\displaystyle\int\limits_{\mathbb{R}^N}\frac{|u(y)|^{2^*_{\mu}}}{|x-y|^{\mu}}dy\right)|u|^{2^*_{\mu}-2}u, \quad x \in \mathbb{R}^N, \end{array}$$ where a > 0, b ≥ 0, 0 < μ < N, N ≥ 3, α and β are positive real parameters, $\begin{array}{} 2^*_{\mu} = (2N-\mu)/(N-2) \end{array}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, k ∈ Lr(ℝN), with r = 2∗/(2∗ − q) if 1 < q < 2* and r = ∞ if q ≥ 2∗. According to the different range of q, we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting.


2021 ◽  
Vol 692 (4) ◽  
pp. 042002
Author(s):  
Yanyu Zhang ◽  
Xiangyu Wang ◽  
Xiaofei Sun ◽  
Hangfei Gong ◽  
Yunshi Zhang

2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. A. Abdelghany ◽  
A.-B. A. Mohamed ◽  
M. Tammam ◽  
Watson Kuo ◽  
H. Eleuch

AbstractWe formulate the tripartite entropic uncertainty relation and predict its lower bound in a three-qubit Heisenberg XXZ spin chain when measuring an arbitrary pair of incompatible observables on one qubit while the other two are served as quantum memories. Our study reveals that the entanglement between the nearest neighbors plays an important role in reducing the uncertainty in measurement outcomes. In addition we have shown that the Dolatkhah’s lower bound (Phys Rev A 102(5):052227, 2020) is tighter than that of Ming (Phys Rev A 102(01):012206, 2020) and their dynamics under phase decoherence depends on the choice of the observable pair. In the absence of phase decoherence, Ming’s lower bound is time-invariant regardless the chosen observable pair, while Dolatkhah’s lower bound is perfectly identical with the tripartite uncertainty with a specific choice of pair.


Sign in / Sign up

Export Citation Format

Share Document