Controlling Chaos Using Input–Output Linearization Approach

1997 ◽  
Vol 07 (07) ◽  
pp. 1659-1664 ◽  
Author(s):  
Xinghuo Yu

In this article the input–output linearization approach is used for controlling chaos. It is shown that by using only partial states, the entire chaotic system is stabilizable, provided the zero dynamics is stable. Generally speaking, trajectories of chaotic systems do not grow exponentially and are usually bounded. In particular, for dissipative chaotic systems the stable zero dynamics can always be found. Hence the stabilization as well as tracking periodic signals are possible. The Lorenz system is used to inform the discussion. Simulation results are presented to show the effectiveness of the approach.

2004 ◽  
Vol 14 (04) ◽  
pp. 1439-1445 ◽  
Author(s):  
S. S. GE

In this letter, we reconsider the problem of controlling chaos in the well-known Lorenz system. Firstly, the difficulty in controlling the Lorenz system is discussed in the general strict-feedback form. Then, singularity-free adaptive control is presented for the Lorenz system with three key parameters unknown by exploiting the physical property of the system using decoupled backstepping design. The proposed controller guarantees the asymptotic convergence of the output and the boundedness of all the signals in the closed-loop system. Simulation results are conducted to show the effectiveness of the approach.


2001 ◽  
Vol 11 (04) ◽  
pp. 1115-1119 ◽  
Author(s):  
C. WANG ◽  
S. S. GE

In this paper, we consider the problem of controlling chaos in the well-known Lorenz system. Firstly we show that the Lorenz system can be transformed into a kind of nonlinear system in the so-called general strict-feedback form. Then, adaptive backstepping design is used to control the Lorenz system with three key parameters unknown. By exploiting the property of the system, the resulting controller is singularity free, and the closed-loop system is stable globally. Simulation results are conducted to show the effectiveness of the approach.


2017 ◽  
Vol 31 (36) ◽  
pp. 1750346 ◽  
Author(s):  
Chuangbiao Xu ◽  
Renhuan Yang

Parameter estimation of chaotic systems is an important problem in nonlinear science and has aroused increasing interest of many research fields, which can be basically reduced to a multidimensional optimization problem. In this paper, an improved boundary bird swarm algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the good global convergence and robustness of the bird swarm algorithm and the exploitation capability of improved boundary learning strategy. Experiments are conducted on the Lorenz system and the coupling motor system. Numerical simulation results reveal the effectiveness and with desirable performance of IBBSA for parameter estimation of chaotic systems.


2019 ◽  
Vol 29 (14) ◽  
pp. 1950197 ◽  
Author(s):  
P. D. Kamdem Kuate ◽  
Qiang Lai ◽  
Hilaire Fotsin

The Lorenz system has attracted increasing attention on the issue of its simplification in order to produce the simplest three-dimensional chaotic systems suitable for secure information processing. Meanwhile, Sprott’s work on elegant chaos has revealed a set of 19 chaotic systems all described by simple algebraic equations. This paper presents a new piecewise-linear chaotic system emerging from the simplification of the Lorenz system combined with the elegance of Sprott systems. Unlike the majority, the new system is a non-Shilnikov chaotic system with two nonhyperbolic equilibria. It is multiplier-free, variable-boostable and exclusively based on absolute value and signum nonlinearities. The use of familiar tools such as Lyapunov exponents spectra, bifurcation diagrams, frequency power spectra as well as Poincaré map help to demonstrate its chaotic behavior. The novel system exhibits inverse period doubling bifurcations and multistability. It has only five terms, one bifurcation parameter and a total amplitude controller. These features allow a simple and low cost electronic implementation. The adaptive synchronization of the novel system is investigated and the corresponding electronic circuit is presented to confirm its feasibility.


2007 ◽  
Vol 14 (5) ◽  
pp. 615-620 ◽  
Author(s):  
Y. Saiki

Abstract. An infinite number of unstable periodic orbits (UPOs) are embedded in a chaotic system which models some complex phenomenon. Several algorithms which extract UPOs numerically from continuous-time chaotic systems have been proposed. In this article the damped Newton-Raphson-Mees algorithm is reviewed, and some important techniques and remarks concerning the practical numerical computations are exemplified by employing the Lorenz system.


2008 ◽  
Vol 22 (19) ◽  
pp. 1859-1865 ◽  
Author(s):  
XINGYUAN WANG ◽  
DAHAI NIU ◽  
MINGJUN WANG

A nonlinear active tracking controller for the four-dimensional hyperchaotic Lorenz system is designed in the paper. The controller enables this hyperchaotic system to track all kinds of reference signals, such as the sinusoidal signal. The self-synchronization of the hyperchaotic Lorenz system and the different-structure synchronization with other chaotic systems can also be realized. Numerical simulation results show the effectiveness of the controller.


2009 ◽  
Vol 19 (01) ◽  
pp. 387-393 ◽  
Author(s):  
YAN-WU WANG ◽  
CHANGYUN WEN ◽  
YENG CHAI SOH ◽  
ZHI-HONG GUAN

Impulsive synchronization of chaotic systems is an attractive topic and a number of interesting results have been obtained in recent years. However, all of these results on impulsive synchronization need to employ full states of the system to achieve the desired objectives. In this paper, impulsive synchronization that needs only part of system states is studied for a class of nonlinear system. Typical chaotic systems, such as Lorenz system, Chen's system, and a 4D hyperchaotic system, are taken as examples. A new scheme is proposed to select the impulsive intervals. After some theoretical analysis, simulation results show the effectiveness of the proposed synchronization scheme.


2001 ◽  
Vol 11 (06) ◽  
pp. 1737-1741 ◽  
Author(s):  
XINGHUO YU ◽  
YANXING SONG

An invariant manifold based chaos synchronization approach is proposed in this letter. A novel idea of using only a partial state of chaotic systems to synchronize the coupled chaotic systems is presented by taking into account the inherent dynamic properties of the chaotic systems. The effectiveness of the approach and idea is tested on the Lorenz system and the fourth-order Rossler system.


2012 ◽  
Vol 542-543 ◽  
pp. 1042-1046 ◽  
Author(s):  
Xin Deng

In this paper, the first new chaotic system is gained by anti-controlling Chen system,which belongs to the general Lorenz system; also, the second new chaotic system is gained by anti-controlling the first new chaotic system, which belongs to the general Lü system. Moreover,some basic dynamical properties of two new chaotic systems are studied, either numerically or analytically. The obtained results show clearly that Chen chaotic system and two new chaotic systems also can form another Lorenz system family and deserve further detailed investigation.


2014 ◽  
Vol 24 (06) ◽  
pp. 1450086 ◽  
Author(s):  
J. C. Sprott ◽  
Xiong Wang ◽  
Guanrong Chen

This letter reports an interesting finding that the parametric Lorenz system and the parametric Chen system "shake hands" at a particular point of their common parameter space, as the time variable t → +∞ in the Lorenz system while t → -∞ in the Chen system. This helps better clarify and understand the relationship between these two closely related but topologically nonequivalent chaotic systems.


Sign in / Sign up

Export Citation Format

Share Document