USING INCREMENTAL PLANNING TO FOSTER APPLICATION FRAMEWORK REUSE

Author(s):  
ALVARO ORTIGOSA ◽  
MARCELO CAMPO

In this work, we present an approach for documenting object-oriented application frameworks and use the documentation to guide the framework instantiation process. Our approach is based on a shift from a framework-centered to a functionality-centered documentation, through which a tool can guide the instantiation process according to the functionality required for the new application. The fundamental idea of our work is the combination of the concept of user-tasks modeling and least commitment planning methods to guide the instantiation process. Based on these techniques, the tool is able to present the different high level activities that can be carried out when creating a new application from a framework to the developer, taking as a basis the documentation provided by the designer through instantiation rules.

Author(s):  
Peng Lu ◽  
Xiao Cong ◽  
Dongdai Zhou

Nowadays, E-learning system has been widely applied to practical teaching. It was favored by people for its characterized course arrangement and flexible learning schedule. However, the system does have some problems in the process of application such as the functions of single software are not diversified enough to satisfy the requirements in teaching completely. In order to cater more applications in the teaching process, it is necessary to integrate functions from different systems. But the difference in developing techniques and the inflexibility in design makes it difficult to implement. The major reason of these problems is the lack of fine software architecture. In this article, we build domain model and component model of E-learning system and components integration method on the basis of WebService. And we proposed an abstract framework of E-learning which could express the semantic relationship among components and realize high level reusable on the basis of informationized teaching mode. On this foundation, we form an E-learning oriented layering software architecture contain component library layer, application framework layer and application layer. Moreover, the system contains layer division multiplexing and was not built upon developing language and tools. Under the help of the software architecture, we could build characterized E-learning system flexibly like building blocks through framework selection, component assembling and replacement. In addition, we exemplify how to build concrete E-learning system on the basis of this software architecture.


2014 ◽  
Vol 599-601 ◽  
pp. 530-533
Author(s):  
Hong Hao Wang ◽  
Hui Quan Wang ◽  
Zhong He Jin

Due to the complex timing sequence of NAND flash, a unified design process is urgently required to guarantee the reliability of storage system of nano-satellite. Unified Modeling Language (UML) is a widely used high level modeling language for object-oriented design. This paper adopts the UML as the design and modelling tool in the low level storage system design to elaborate the UML application in each phase of design in detail. The result shows taking UML as the modelling tool results in a clear and unambiguity design, which promotes the reliability and quality of software. At last, the feasibility of object-oriented implementation in C is presented.


Author(s):  
Michael M. Tiller ◽  
Jonathan A. Dantzig

Abstract In this paper we discuss the design of an object-oriented framework for simulation and optimization. Although oriented around high-level problem solving, the framework defines several classes of problems and includes concrete implementations of common algorithms for solving these problems. Simulations are run by combining these algorithms, as needed, for a particular problem. Included in this framework is the capability to compute the sensitivity of simulation results to the different simulation parameters (e.g. material properties, boundary conditions, etc). This sensitivity information is valuable in performing optimization because it allows the use of gradient-based optimization algorithms. Also included in the system are many useful abstractions and implementations related to the finite element method.


2009 ◽  
pp. 2646-2664
Author(s):  
Juan José Olmedilla

The use of object-oriented (OO) architecture knowledge such as patterns, heuristics, principles, refactorings and bad smells improve the quality of designs, as Garzás and Piattini (2005) state in their study; according to it, the application of those elements impact on the quality of an OO design and can serve as basis to establish some kind of software design improvement (SDI) method. But how can we measure the level of improvement? Is there a set of accepted internal attributes to measure the quality of a design? Furthermore, if such a set exists will it be possible to use a measurement model to guide the SDI in the same way software processimprovement models (Humphrey, 1989; Paulk, Curtis, Chrissis, & Weber, 1993) are guided by process metrics (Fenton & Pfleeger, 1998)? Since (Chidamber & Kemerer, 1991) several OO metrics suites have been proposed to measure OO properties, such as encapsulation, cohesion, coupling and abstraction, both in designs and in code, in this chapter we review the literature to find out to which high level quality properties are mapped and if an OO design evaluation model has been formally proposed or even is possible.


Author(s):  
Chris Scogings ◽  
Chris Phillips

The primary focus in UML has been on support for the design and implementation of the software comprising the underlying system. Very little support is provided for the design or evolution of the user interface. This chapter commences with a brief review of UML and its support for user interface modeling. Lean Cuisine+, a notation capable of modeling both dialogue structure and high-level user tasks, is described. It is shown through a case study that Lean Cuisine+ can be used to augment UML and provide the user interface support that is currently lacking.


Sign in / Sign up

Export Citation Format

Share Document