An Effective Method of Evaluating Pension Service Quality Using Multi-Dimension Attention Convolutional Neural Networks

Author(s):  
Chunshan Li ◽  
Yuanyuan Wang ◽  
Dongmei Li ◽  
Dianhui Chu ◽  
Mingxiao Ma

How to make an accurate evaluation of the quality of pension service has become the most important task. However, in the real world, many customs always forget to rate pension service. They only leave a few short, less semantic, and discontinuous review words below the service. This paper will propose an effective multi-dimension attention convolutional neural networks (MACNNs) model to analyze customer review texts and predict the pension service quality. In MACNN, the emoticon feature, sentiment feature, and word feature can be extracted together to construct feature space. And then attention layer and convolution layer work together to predict the service quality. Compared with the traditional machine learning methods and neural network methods, this method is more objective and accurate to reflect consumers’ real evaluation of pension service.

Author(s):  
Evgenii E. Marushko ◽  
Alexander A. Doudkin ◽  
Xiangtao Zheng

The paper proposes an identification technique of objects on the Earth’s surface images based on combination of machine learning methods. Different variants of multi-layer convolutional neural networks and support vector machines are considered as original models. A hybrid convolutional neural network that combines features extracted by the neural network and experts is proposed. Optimal values of hyperparameters of the models are calculated by grid search methods using k-fold cross-validation. The possibility of improving the accuracy of identification based on the ensembles of these models is shown. Effectiveness of the proposed technique is demonstrated by the example of images obtained by synthetic aperture radar.


Algorithms ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 198 ◽  
Author(s):  
Roland Lõuk ◽  
Andri Riid ◽  
René Pihlak ◽  
Aleksei Tepljakov

In the manuscript, the issue of detecting and segmenting out pavement defects on highway roads is addressed. Specifically, computer vision (CV) methods are developed and applied to the problem based on deep learning of convolutional neural networks (ConvNets). A novel neural network structure is considered, based on a pipeline of three ConvNets and endowed with the capacity for context awareness, which improves grid-based search for defects on orthoframes by considering the surrounding image content—an approach, which essentially draws inspiration from how humans tend to solve the task of image segmentation. Also, methods for assessing the quality of segmentation are discussed. The contribution also describes the complete procedure of working with pavement defects in an industrial setting, involving the workcycle of defect annotation, ConvNet training and validation. The results of ConvNet evaluation provided in the paper hint at a successful implementation of the proposed technique.


2018 ◽  
Vol 8 (9) ◽  
pp. 1573 ◽  
Author(s):  
Vladimir Kulyukin ◽  
Sarbajit Mukherjee ◽  
Prakhar Amlathe

Electronic beehive monitoring extracts critical information on colony behavior and phenology without invasive beehive inspections and transportation costs. As an integral component of electronic beehive monitoring, audio beehive monitoring has the potential to automate the identification of various stressors for honeybee colonies from beehive audio samples. In this investigation, we designed several convolutional neural networks and compared their performance with four standard machine learning methods (logistic regression, k-nearest neighbors, support vector machines, and random forests) in classifying audio samples from microphones deployed above landing pads of Langstroth beehives. On a dataset of 10,260 audio samples where the training and testing samples were separated from the validation samples by beehive and location, a shallower raw audio convolutional neural network with a custom layer outperformed three deeper raw audio convolutional neural networks without custom layers and performed on par with the four machine learning methods trained to classify feature vectors extracted from raw audio samples. On a more challenging dataset of 12,914 audio samples where the training and testing samples were separated from the validation samples by beehive, location, time, and bee race, all raw audio convolutional neural networks performed better than the four machine learning methods and a convolutional neural network trained to classify spectrogram images of audio samples. A trained raw audio convolutional neural network was successfully tested in situ on a low voltage Raspberry Pi computer, which indicates that convolutional neural networks can be added to a repertoire of in situ audio classification algorithms for electronic beehive monitoring. The main trade-off between deep learning and standard machine learning is between feature engineering and training time: while the convolutional neural networks required no feature engineering and generalized better on the second, more challenging dataset, they took considerably more time to train than the machine learning methods. To ensure the replicability of our findings and to provide performance benchmarks for interested research and citizen science communities, we have made public our source code and our curated datasets.


Author(s):  
Muhammad Hanif Ahmad Nizar ◽  
Chow Khuen Chan ◽  
Azira Khalil ◽  
Ahmad Khairuddin Mohamed Yusof ◽  
Khin Wee Lai

Background: Valvular heart disease is a serious disease leading to mortality and increasing medical care cost. The aortic valve is the most common valve affected by this disease. Doctors rely on echocardiogram for diagnosing and evaluating valvular heart disease. However, the images from echocardiogram are poor in comparison to Computerized Tomography and Magnetic Resonance Imaging scan. This study proposes the development of Convolutional Neural Networks (CNN) that can function optimally during a live echocardiographic examination for detection of the aortic valve. An automated detection system in an echocardiogram will improve the accuracy of medical diagnosis and can provide further medical analysis from the resulting detection. Methods: Two detection architectures, Single Shot Multibox Detector (SSD) and Faster Regional based Convolutional Neural Network (R-CNN) with various feature extractors were trained on echocardiography images from 33 patients. Thereafter, the models were tested on 10 echocardiography videos. Results: Faster R-CNN Inception v2 had shown the highest accuracy (98.6%) followed closely by SSD Mobilenet v2. In terms of speed, SSD Mobilenet v2 resulted in a loss of 46.81% in framesper- second (fps) during real-time detection but managed to perform better than the other neural network models. Additionally, SSD Mobilenet v2 used the least amount of Graphic Processing Unit (GPU) but the Central Processing Unit (CPU) usage was relatively similar throughout all models. Conclusion: Our findings provide a foundation for implementing a convolutional detection system to echocardiography for medical purposes.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jack Y. Araz ◽  
Michael Spannowsky

Abstract Ensemble learning is a technique where multiple component learners are combined through a protocol. We propose an Ensemble Neural Network (ENN) that uses the combined latent-feature space of multiple neural network classifiers to improve the representation of the network hypothesis. We apply this approach to construct an ENN from Convolutional and Recurrent Neural Networks to discriminate top-quark jets from QCD jets. Such ENN provides the flexibility to improve the classification beyond simple prediction combining methods by linking different sources of error correlations, hence improving the representation between data and hypothesis. In combination with Bayesian techniques, we show that it can reduce epistemic uncertainties and the entropy of the hypothesis by simultaneously exploiting various kinematic correlations of the system, which also makes the network less susceptible to a limitation in training sample size.


2014 ◽  
Vol 10 (S306) ◽  
pp. 279-287 ◽  
Author(s):  
Michael Hobson ◽  
Philip Graff ◽  
Farhan Feroz ◽  
Anthony Lasenby

AbstractMachine-learning methods may be used to perform many tasks required in the analysis of astronomical data, including: data description and interpretation, pattern recognition, prediction, classification, compression, inference and many more. An intuitive and well-established approach to machine learning is the use of artificial neural networks (NNs), which consist of a group of interconnected nodes, each of which processes information that it receives and then passes this product on to other nodes via weighted connections. In particular, I discuss the first public release of the generic neural network training algorithm, calledSkyNet, and demonstrate its application to astronomical problems focusing on its use in the BAMBI package for accelerated Bayesian inference in cosmology, and the identification of gamma-ray bursters. TheSkyNetand BAMBI packages, which are fully parallelised using MPI, are available athttp://www.mrao.cam.ac.uk/software/.


Author(s):  
Sachin B. Jadhav

<span lang="EN-US">Plant pathologists desire soft computing technology for accurate and reliable diagnosis of plant diseases. In this study, we propose an efficient soybean disease identification method based on a transfer learning approach by using a pre-trained convolutional neural network (CNN’s) such as AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201. The proposed convolutional neural networks were trained using 1200 plant village image dataset of diseased and healthy soybean leaves, to identify three soybean diseases out of healthy leaves. Pre-trained CNN used to enable a fast and easy system implementation in practice. We used the five-fold cross-validation strategy to analyze the performance of networks. In this study, we used a pre-trained convolutional neural network as feature extractors and classifiers. The experimental results based on the proposed approach using pre-trained AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201 networks achieve an accuracy of 95%, 96.4 %, 96.4 %, 92.1%, 93.6% respectively. The experimental results for the identification of soybean diseases indicated that the proposed networks model achieves the highest accuracy</span>


2020 ◽  
Vol 9 (1) ◽  
pp. 7-10
Author(s):  
Hendry Fonda

ABSTRACT Riau batik is known since the 18th century and is used by royal kings. Riau Batik is made by using a stamp that is mixed with coloring and then printed on fabric. The fabric used is usually silk. As its development, comparing Javanese  batik with riau batik Riau is very slowly accepted by the public. Convolutional Neural Networks (CNN) is a combination of artificial neural networks and deeplearning methods. CNN consists of one or more convolutional layers, often with a subsampling layer followed by one or more fully connected layers as a standard neural network. In the process, CNN will conduct training and testing of Riau batik so that a collection of batik models that have been classified based on the characteristics that exist in Riau batik can be determined so that images are Riau batik and non-Riau batik. Classification using CNN produces Riau batik and not Riau batik with an accuracy of 65%. Accuracy of 65% is due to basically many of the same motifs between batik and other batik with the difference lies in the color of the absorption in the batik riau. Kata kunci: Batik; Batik Riau; CNN; Image; Deep Learning   ABSTRAK   Batik Riau dikenal sejak abad ke 18 dan digunakan oleh bangsawan raja. Batik Riau dibuat dengan menggunakan cap yang dicampur dengan pewarna kemudian dicetak di kain. Kain yang digunakan biasanya sutra. Seiring perkembangannya, dibandingkan batik Jawa maka batik Riau sangat lambat diterima oleh masyarakat. Convolutional Neural Networks (CNN) merupakan kombinasi dari jaringan syaraf tiruan dan metode deeplearning. CNN terdiri dari satu atau lebih lapisan konvolutional, seringnya dengan suatu lapisan subsampling yang diikuti oleh satu atau lebih lapisan yang terhubung penuh sebagai standar jaringan syaraf. Dalam prosesnya CNN akan melakukan training dan testing terhadap batik Riau sehingga didapat kumpulan model batik yang telah terklasi    fikasi berdasarkan ciri khas yang ada pada batik Riau sehingga dapat ditentukan gambar (image) yang merupakan batik Riau dan yang bukan merupakan batik Riau. Klasifikasi menggunakan CNN menghasilkan batik riau dan bukan batik riau dengan akurasi 65%. Akurasi 65% disebabkan pada dasarnya banyak motif yang sama antara batik riau dengan batik lainnya dengan perbedaan terletak pada warna cerap pada batik riau. Kata kunci: Batik; Batik Riau; CNN; Image; Deep Learning


2021 ◽  
Author(s):  
Shima Baniadamdizaj ◽  
Mohammadreza Soheili ◽  
Azadeh Mansouri

Abstract Today integration of facts from virtual and paper files may be very vital for the expertise control of efficient. This calls for the record to be localized at the photograph. Several strategies had been proposed to resolve this trouble; however, they may be primarily based totally on conventional photograph processing strategies that aren't sturdy to intense viewpoints and backgrounds. Deep Convolutional Neural Networks (CNNs), on the opposite hand, have demonstrated to be extraordinarily sturdy to versions in history and viewing attitude for item detection and classification responsibilities. We endorse new utilization of Neural Networks (NNs) for the localization trouble as a localization trouble. The proposed technique ought to even localize photos that don't have a very square shape. Also, we used a newly accrued dataset that has extra tough responsibilities internal and is in the direction of a slipshod user. The end result knowledgeable in 3 exclusive classes of photos and our proposed technique has 83% on average. The end result is as compared with the maximum famous record localization strategies and cell applications.


Author(s):  
Ahmed Thamer Radhi ◽  
Wael Hussein Zayer ◽  
Adel Manaa Dakhil

<span lang="EN-US">This paper presents a fast and accurate fault detection, classification and direction discrimination algorithm of transmission lines using one-dimensional convolutional neural networks (1D-CNNs) that have ingrained adaptive model to avoid the feature extraction difficulties and fault classification into one learning algorithm. A proposed algorithm is directly usable with raw data and this deletes the need of a discrete feature extraction method resulting in more effective protective system. The proposed approach based on the three-phase voltages and currents signals of one end at the relay location in the transmission line system are taken as input to the proposed 1D-CNN algorithm. A 132kV power transmission line is simulated by Matlab simulink to prepare the training and testing data for the proposed 1D- CNN algorithm. The testing accuracy of the proposed algorithm is compared with other two conventional methods which are neural network and fuzzy neural network. The results of test explain that the new proposed detection system is efficient and fast for classifying and direction discrimination of fault in transmission line with high accuracy as compared with other conventional methods under various conditions of faults.</span>


Sign in / Sign up

Export Citation Format

Share Document