scholarly journals ON LIE BIALGEBRAS OF LOOPS ON ORIENTABLE SURFACES

2008 ◽  
Vol 17 (03) ◽  
pp. 351-359 ◽  
Author(s):  
ATTILIO LE DONNE

Goldman [2] and Turaev [4] found a Lie bialgebra structure on the vector space generated by non-trivial free homotopy classes of loops on an orientable surface. Chas [1] by the aid of the computer, found a negative answer to Turaev's question about the characterization of the classes with cobracket zero as multiples of simple classes, in every surface of negative Euler characteristic and positive genus. However, she left open Turaev's conjecture, namely if, for genus zero, every class with cobracket zero is a multiple of a simple class. The aim of this paper is to give a positive answer to this conjecture.

10.37236/3540 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Dong Ye ◽  
Heping Zhang

A graph $G$ with a perfect matching is Pfaffian if it admits an orientation $D$ such that every central cycle $C$ (i.e. $C$ is of even size and $G-V(C)$ has a perfect matching) has an odd number of edges oriented in either direction of the cycle. It is known that the number of perfect matchings of a Pfaffian graph can be computed in polynomial time. In this paper, we show that every embedding of a Pfaffian brace (i.e. 2-extendable bipartite graph)  on a surface with a positive genus has face-width at most 3.  Further, we study Pfaffian cubic braces and obtain a characterization of Pfaffian polyhex graphs: a polyhex graph is Pfaffian if and only if it is either non-bipartite or isomorphic to the cube, or the Heawood graph, or the Cartesian product $C_k\times K_2$ for even integers $k\ge 6$.


2020 ◽  
pp. 1-10
Author(s):  
MARK GRANT ◽  
AGATA SIENICKA

Abstract The closure of a braid in a closed orientable surface Ʃ is a link in Ʃ × S1. We classify such closed surface braids up to isotopy and homeomorphism (with a small indeterminacy for isotopy of closed sphere braids), algebraically in terms of the surface braid group. We find that in positive genus, braids close to isotopic links if and only if they are conjugate, and close to homeomorphic links if and only if they are in the same orbit of the outer action of the mapping class group on the surface braid group modulo its centre.


Author(s):  
Joan S. Birman ◽  
D. R. J. Chillingworth

Let X be a closed, compact connected 2-manifold (a surface), which we will denote by O or N if we wish to stress that X is orientable or non-orientable. Let G(X) denote the group of all homeomorphisms X → X, D(X) the normal subgroup of homeomorphisms isotopic to the identity, and H(X) the factor group G(X)/D(X), i.e. the homeotopy group of X. The problem of determining generators for H(O) was considered by Lickorish in (7, 8), and the second of these papers specifies a finite set of generators of a particularly simple type. In (10) and (11) Lickorish considered the analogous problem for non-orientable surfaces, and, using Lickorish's partial results, Chilling-worth (4) determined a finite set of generators for H(N). While the generators obtained for H(O) and H(N) were strikingly similar, it was noteworthy that the techniques used in the two cases were different, and in particular that little use was made in the non-orientable case of the earlier results obtained on the orientable case. The purpose of this note is to show that the results of Lickorish and Chillingworth on non-orientable surfaces follow rather easily from the work in (7, 8) by an application of some ideas from the theory of covering spaces (2). Moreover, while Lickorish and Chillingworth sought only to find generators, we are able to show (Theorem 1) how in fact the entire structure of the group H(N) is determined by H(O), where O is an orientable double cover of N. Finally, we are able to determine defining relations for H(N) for the case where N is the connected sum of 3 projective planes (Theorem 3).


Author(s):  
Javier Aramayona ◽  
Priyam Patel ◽  
Nicholas G Vlamis

Abstract It is a classical result that pure mapping class groups of connected, orientable surfaces of finite type and genus at least 3 are perfect. In stark contrast, we construct nontrivial homomorphisms from infinite-genus mapping class groups to the integers. Moreover, we compute the first integral cohomology group associated to the pure mapping class group of any connected orientable surface of genus at least 2 in terms of the surface’s simplicial homology. In order to do this, we show that pure mapping class groups of infinite-genus surfaces split as a semi-direct product.


2006 ◽  
Vol 49 (4) ◽  
pp. 624-627
Author(s):  
Masakazu Teragaito

AbstractFor a non-trivial knot in the 3-sphere, only integral Dehn surgery can create a closed 3-manifold containing a projective plane. If we restrict ourselves to hyperbolic knots, the corresponding claim for a Klein bottle is still true. In contrast to these, we show that non-integral surgery on a hyperbolic knot can create a closed non-orientable surface of any genus greater than two.


2008 ◽  
Vol 10 (02) ◽  
pp. 221-260 ◽  
Author(s):  
CHENGMING BAI

We introduce a notion of left-symmetric bialgebra which is an analogue of the notion of Lie bialgebra. We prove that a left-symmetric bialgebra is equivalent to a symplectic Lie algebra with a decomposition into a direct sum of the underlying vector spaces of two Lagrangian subalgebras. The latter is called a parakähler Lie algebra or a phase space of a Lie algebra in mathematical physics. We introduce and study coboundary left-symmetric bialgebras and our study leads to what we call "S-equation", which is an analogue of the classical Yang–Baxter equation. In a certain sense, the S-equation associated to a left-symmetric algebra reveals the left-symmetry of the products. We show that a symmetric solution of the S-equation gives a parakähler Lie algebra. We also show that such a solution corresponds to the symmetric part of a certain operator called "[Formula: see text]-operator", whereas a skew-symmetric solution of the classical Yang–Baxter equation corresponds to the skew-symmetric part of an [Formula: see text]-operator. Thus a method to construct symmetric solutions of the S-equation (hence parakähler Lie algebras) from [Formula: see text]-operators is provided. Moreover, by comparing left-symmetric bialgebras and Lie bialgebras, we observe that there is a clear analogue between them and, in particular, parakähler Lie groups correspond to Poisson–Lie groups in this sense.


1995 ◽  
Vol 04 (02) ◽  
pp. 213-224 ◽  
Author(s):  
JONATHAN A. HILLMAN ◽  
AKIO KAWAUCHI

We show that a topologically locally flat embedding of a closed orientable surface in the 4-sphere is isotopic to one whose image lies in the equatorial 3-sphere if and only if its exterior has an infinite cyclic fundamental group.


2011 ◽  
Vol 203 ◽  
pp. 47-100 ◽  
Author(s):  
Yuichiro Hoshi

AbstractLet l be a prime number. In this paper, we prove that the isomorphism class of an l-monodromically full hyperbolic curve of genus zero over a finitely generated extension of the field of rational numbers is completely determined by the kernel of the natural pro-l outer Galois representation associated to the hyperbolic curve. This result can be regarded as a genus zero analogue of a result due to Mochizuki which asserts that the isomorphism class of an elliptic curve which does not admit complex multiplication over a number field is completely determined by the kernels of the natural Galois representations on the various finite quotients of its Tate module.


2011 ◽  
Vol 32 (5) ◽  
pp. 1615-1660 ◽  
Author(s):  
JOANNA KUŁAGA

AbstractOn each compact connected orientable surface of genus greater than one we construct a class of flows without self-similarities.


10.37236/5989 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Wenjie Fang ◽  
Mihyun Kang ◽  
Michael Moßhammer ◽  
Philipp Sprüssel

Let $\mathbb{S}_g$ be the orientable surface of genus $g$ for a fixed non-negative integer $g$. We show that the number of vertex-labelled cubic multigraphs embeddable on $\mathbb{S}_g$ with $2n$ vertices is asymptotically $c_g n^{5/2(g-1)-1}\gamma^{2n}(2n)!$, where $\gamma$ is an algebraic constant and $c_g$ is a constant depending only on the genus $g$. We also derive an analogous result for simple cubic graphs and weighted cubic multigraphs. Additionally, for $g\ge1$, we prove that a typical cubic multigraph embeddable on $\mathbb{S}_g$ has exactly one non-planar component.


Sign in / Sign up

Export Citation Format

Share Document