ENTROPY OF A ROTATING AND ARBITRARILY ACCELERATING BLACK HOLE

2003 ◽  
Vol 12 (06) ◽  
pp. 1083-1094 ◽  
Author(s):  
XUEJUN YANG ◽  
YIWEN HAN ◽  
ZHENG ZHAO

The entropy of a rotating and arbitrarily accelerating black hole whose metric changes slowly is calculated using the thin film brick-wall model. We obtain the entropy density at every point of the horizon surface and the total entropy of the black hole. The results show that the entropy of the nonstationary black hole is also proportional to the surface area of the black hole's event horizon as in the cases of stationary black holes.

1999 ◽  
Vol 14 (04) ◽  
pp. 239-246 ◽  
Author(s):  
YOU-GEN SHEN ◽  
DA-MING CHEN

By using 't Hooft's brick wall model, the corrections for a massless quantum scalar field to the black hole entropy are studied in rotating U (1) ⊗ U (1)-dilaton black hole space–time. The free energy and entropy for this case are calculated, and in Hartle–Hawking states, the derived quantum entropy is composed of the geometric part and the non-geometric part which is logrithmically divergent. It turns out that the logrithmic part is related to the characteristic quantities of a black hole.


Open Physics ◽  
2009 ◽  
Vol 7 (3) ◽  
Author(s):  
Chunyan Wang ◽  
Yuanxing Gui ◽  
Lili Xing

AbstractUsing the generalized uncertainty principle, we calculate the entropy of the charged dilaton-axion black hole for both asymptotically flat and non-flat cases by counting degrees of freedom near the horizon. The divergence of density of states and free energy appearing in the thin film brick-wall model is removed without any cutoff. The entropy proportional to the horizon area is derived from the contribution of the vicinity of the horizon.


2004 ◽  
Vol 19 (17n18) ◽  
pp. 3005-3011 ◽  
Author(s):  
ZHOU'AN ZHOU ◽  
WENBIAO LIU

Applying the powerful thin film brick-wall model to the general Kerr–Newman black hole, we find out that the entropy calculation result can also satisfy the area theorem. Moreover, the area theorem is not only satisfied for the global black hole, but also for every area cell on its horizon, that means, every cell on the horizon contributes its own part of entropy if we choose a same temperature-related radial cutoff ε'. This new thin film brick-wall model can be used to calculate dynamic black hole which has different temperatures on the horizon. It tells us that the horizon is exactly the statistical origin of a black hole entropy, the total entropy of a black hole is just the sum of all the contributions from every area cell. For a Kerr–Newman black hole, there is also an important difference between the thin film brick-wall model and the original one, that is, we do not need any angular cutoff in the thin film model, and this makes the physical meaning clearer.


2000 ◽  
Vol 15 (31) ◽  
pp. 1901-1914 ◽  
Author(s):  
YOU-GEN SHEN

The free energy and entropy for Dirac field is derived in the general spherically symmetric black hole background, by using 't Hooft's brick wall model. It is found that, in such a black hole background, fermionic entropy is 7/2 times the value of bosonic entropy.


2001 ◽  
Vol 16 (08) ◽  
pp. 489-495
Author(s):  
WEIGANG QIU ◽  
JIANJUN XU ◽  
RU-KENG SU ◽  
BIN WANG

Using brick wall model, the first quantum corrections to the extreme Reissner–Nordström black hole entropy due to scalar field as well as electromagnetic field have been calculated. Different quantum entropy values have been obtained for two different kinds of extreme black holes.


2001 ◽  
Vol 16 (23) ◽  
pp. 3793-3803 ◽  
Author(s):  
WENBIAO LIU ◽  
ZHENG ZHAO

The brick-wall method put forward by 't Hooft has contributed a great deal to the understanding and calculating of the entropy of a black hole. However, there are some drawbacks in it such as little mass approximation, neglecting logarithm terms, and taking the term including L3 as a contribution of the vacuum surrounding the black hole. Moreover, the fundamental problem is why the entropy of scalar field or Dirac field surrounding a black hole is the entropy of the black hole itself. It is well known that the event horizon is the characteristic of a black hole. The entropy calculation of a black hole should be only related to its horizon. Due to this analysis, we improve the brick-wall model by taking that the entropy of a black hole is only contributed by a thin film near the event horizon. This improvement not only gives us a satisfied result, but also avoids the drawbacks in the original brick-wall method. It is found that there is an intrinsic relation between the event horizon and the entropy. We also calculate the entropy of Schwarzschild–de Sitter space–time via the improved method, which can hardly be resolved via the original model.


2004 ◽  
Vol 53 (11) ◽  
pp. 4002
Author(s):  
Sun Xue-Feng ◽  
Jing Ling ◽  
Liu Wen-Biao

2000 ◽  
Vol 15 (28) ◽  
pp. 1739-1747 ◽  
Author(s):  
LI XIANG ◽  
ZHAO ZHENG

We point out that the brick-wall model cannot be applied to the nonstatic black hole. In the case of a static hole, we propose a new model where the black hole entropy is attributed to the dynamical degrees of the field covering the two-dimensional membrane just outside the horizon. A cutoff different from the model of 't Hooft is necessarily introduced. It can be treated as an increase in horizon because of the space–time fluctuations. We also apply our model to the nonequilibrium and nonstatic cases, such as Schwarzschild–de Sitter and Vaidya space–times. In the nonstatic case, the entropy relies on a time-dependent cutoff.


2016 ◽  
Vol 94 (10) ◽  
pp. 1080-1084 ◽  
Author(s):  
Guqiang Li

By using the brick-wall model, the quantum entropies of static spherical black hole surrounded by quintessence due to the Weyl neutrino, electromagnetic, massless Rarita–Schwinger, and gravitational fields for the source-free case are investigated from a generalized uncertainty relation. It is shown that in addition to the usual quadratically and logarithmically divergent terms, there exist additional quadratic, biquadratic, and logarithmic divergences at ultraviolet σ → 0, which not only depend on the black hole characteristics but also on the spins of the fields and the gravity correction factor. These additional terms describe the contribution of the quantum fields to the entropy and the effect of gravitational interactions on it. After the smallest length scale is taken into account, we find that the contribution of the gravitational interactions to the entropy is larger than the usual dominant term and becomes a part of the whole dominant term, so it is very important and cannot be neglected.


Sign in / Sign up

Export Citation Format

Share Document