scholarly journals RELATIVISTIC HYDRODYNAMICS WITH SOURCES FOR COSMOLOGICAL K-FLUIDS

2005 ◽  
Vol 14 (09) ◽  
pp. 1561-1576 ◽  
Author(s):  
ALBERTO DIEZ-TEJEDOR ◽  
ALEXANDER FEINSTEIN

We consider hydrodynamics with non-conserved number of particles and show that it can be modeled with effective fluid Lagrangians which explicitly depend on the velocity potentials. For such theories, the "shift symmetry" ϕ → ϕ + const leading to the conserved number of fluid particles in conventional hydrodynamics is globally broken and, as a result, the non-conservation of particle number appears as a source term in the continuity equation. The non-conservation of particle number is balanced by the entropy change, with both the entropy and the source term expressed in terms of the fluid velocity potential. Equations of hydrodynamics are derived using a modified version of Schutz's variational principle method. Examples of fluids described by such Lagrangians (tachyon condensate, K-essence) in spatially flat isotropic universe are briefly discussed.

2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Tomoyo Taniguchi ◽  
Yoshinori Ando

To protect flat-bottom cylindrical tanks against severe damage from uplift motion, accurate evaluation of accompanying fluid pressures is indispensable. This paper presents a mathematical solution for evaluating the fluid pressure on a rigid flat-bottom cylindrical tank in the same manner as the procedure outlined and discussed previously by the authors (Taniguchi, T., and Ando, Y., 2010, “Fluid Pressures on Unanchored Rigid Rectangular Tanks Under Action of Uplifting Acceleration,” ASME J. Pressure Vessel Technol., 132(1), p. 011801). With perfect fluid and velocity potential assumed, the Laplace equation in cylindrical coordinates gives a continuity equation, while fluid velocity imparted by the displacement (and its time derivatives) of the shell and bottom plate of the tank defines boundary conditions. The velocity potential is solved with the Fourier–Bessel expansion, and its derivative, with respect to time, gives the fluid pressure at an arbitrary point inside the tank. In practice, designers have to calculate the fluid pressure on the tank whose perimeter of the bottom plate lifts off the ground like a crescent in plan view. However, the asymmetric boundary condition given by the fluid velocity imparted by the deformation of the crescent-like uplift region at the bottom cannot be expressed properly in cylindrical coordinates. This paper examines applicability of a slice model, which is a rigid rectangular tank with a unit depth vertically sliced out of a rigid flat-bottom cylindrical tank with a certain deviation from (in parallel to) the center line of the tank. A mathematical solution for evaluating the fluid pressure on a rigid flat-bottom cylindrical tank accompanying the angular acceleration acting on the pivoting bottom edge of the tank is given by an explicit function of a dimensional variable of the tank, but with Fourier series. It well converges with a few first terms of the Fourier series and accurately calculates the values of the fluid pressure on the tank. In addition, the slice model approximates well the values of the fluid pressure on the shell of a rigid flat-bottom cylindrical tank for any points deviated from the center line. For the designers’ convenience, diagrams that depict the fluid pressures normalized by the maximum tangential acceleration given by the product of the angular acceleration and diagonals of the tank are also presented. The proposed mathematical and graphical methods are cost effective and aid in the design of the flat-bottom cylindrical tanks that allow the uplifting of the bottom plate.


1962 ◽  
Vol 15 (3) ◽  
pp. 535-540 ◽  
Author(s):  
M. Rabinovitch ◽  
W. Plaut

Nucleic acid-containing particles in the cytoplasm of Amoeba proteus (cf. reference 1) were counted after acridine orange staining. The number of particles per ameba was found to be correlated with cell age and size. Fresh daughters had a mean particle number of 5400, whereas predivision amebae contained around 11,000 particles. Amebae from two other strains contained similar particles. The particles were found to be clustered in fasted cells and redispersed after feeding. A marked increase in the particle population was noted in anucleate fragments. These results, together with those previously presented, suggest that the particles multiply intracellularly. Their nature and their relationship to previous work on nucleic acid labeling in Amoeba are discussed.


1995 ◽  
Vol 27 (01) ◽  
pp. 102-119 ◽  
Author(s):  
Wolfgang Weil

A stationary (but not necessarily isotropic) Boolean model Y in the plane is considered as a model for overlapping particle systems. The primary grain (i.e. the typical particle) is assumed to be simply connected, but no convexity assumptions are made. A new method is presented to estimate the intensity y of the underlying Poisson process (i.e. the mean number of particles per unit area) from measurements on the union set Y. The method is based mainly on the concept of convexification of a non-convex set, it also produces an unbiased estimator for a (suitably defined) mean body of Y, which in turn makes it possible to estimate the mean grain of the particle process.


2018 ◽  
Vol 42 (3) ◽  
pp. 240-247
Author(s):  
Carlos Asensio ◽  
Emilio Rodríguez-Caballero ◽  
Francisco Jesús García-Navarro ◽  
José Antonio Torres

ABSTRACT A wind erosion research was carried out in a wind tunnel where sediment samples acquired were studied by an artificial vision camera. These images could be enlarged for further analysis. Image analyses were mainly colorimetry, number of particles present and their size. Soil wind erodibility was analyzed with the image analyses supported by other laboratory results. Anthrosols were the most erodible soils, whereas Calcisols showed the highest resistance to the erosive action of wind. Sediment characteristics show the influence of trap height with decreasing particle size, number and darkness as transport height increases. A two-factor ANOVA for main effect height showed that there were significant differences in particle number and size for sediments trapped 0-15 cm and 40-70 cm high. Soils could be grouped by differences in particle number and size at different heights into highly erodible Anthrosols and Leptosols, non-erodible Calcisols and Arenosols, in which fine particles were already depleted by natural wind erosion. Aggregation showed a similar pattern with decreasing values from Calcisols and Leptosols to Anthrosols and finally Arenosols, where only single sand grains were observed in adhesive traps.


1956 ◽  
Vol 60 (544) ◽  
pp. 241-252 ◽  
Author(s):  
C. H. E. Warren

The most powerful theoretical tool in the solution of the aerodynamic problems of aircraft is the theory of small perturbations, which states that if a wing is thin (or a body slender), and if the incidence is small, then in inviscid flow the fluid velocity at any point can be treated as a small perturbation from the stream velocity. The backbone of our knowledge of the aerodynamics of aircraft is provided by this theory, to which the effects of thick wings and large incidences, and the effect of viscosity, introducing as it does the concept of boundary layers, can be added as additional or correction effects. It is known that at subsonic and again at supersonic speeds, the theory of small perturbations is a linear theory; that is, the assumptions implicit in it lead to a linear partial differential equation for the velocity potential, with linear boundary conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lieping Zhang ◽  
Jinghua Nie ◽  
Shenglan Zhang ◽  
Yanlin Yu ◽  
Yong Liang ◽  
...  

Given that the tracking accuracy and real-time performance of the particle filter (PF) target tracking algorithm are greatly affected by the number of sampled particles, a PF target tracking algorithm based on particle number optimization under the single-station environment was proposed in this study. First, a single-station target tracking model was established, and the corresponding PF algorithm was designed. Next, a tracking simulation experiment was carried out on the PF target tracking algorithm under different numbers of particles with the root mean square error (RMSE) and filtering time as the evaluation indexes. On this basis, the optimal number of particles, which could meet the accuracy and real-time performance requirements, was determined and taken as the number of particles of the proposed algorithm. The MATLAB simulation results revealed that compared with the unscented Kalman filter (UKF), the single-station PF target tracking algorithm based on particle number optimization not only was of high tracking accuracy but also could meet the real-time performance requirement.


Author(s):  
Vincent O. S. Olunloyo ◽  
Charles A. Osheku

It is well known that hydrodynamic forces can have significant effect on the dynamic stability and performance of moving offshore structures that are deployed for the exploration and exploitation of seabed geo-resources. This paper presents an integral transform approach for investigating the effects of non-stationary behavior of the seabed on the Morison hydrodynamic force associated with vertically moving submerged and partially buried offshore structures located in the neighborhood of an exploration zone. For this, the fluid-structure-soil dynamic interaction boundary value problem is modeled as a one-degree-of-freedom system, and the geo-mechanical behavior of the seabed is idealized as a spring and visco-elastic damper. In particular, the corresponding fluid velocity potential and acceleration kernels in the Morison force empirical relation as modified by the seabed poro-mechanics are computed and their implications for the design of such offshore structures analyzed.


Sign in / Sign up

Export Citation Format

Share Document