HIGH-ENERGY PARTICLE INTERACTIONS IN THE INNER JET OF THE RADIO GALAXY M87

2010 ◽  
Vol 19 (06) ◽  
pp. 957-963
Author(s):  
CHLOÉ GUENNOU ◽  
GUSTAVO E. ROMERO ◽  
GABRIELA S. VILA

Recent observations with the High Energy Stereoscopic System (HESS) have revealed strong and variable high energy gamma-ray emission from the radio galaxy M87. The origin of such emission is uncertain, but the rapid variability indicates that it should be produced close to the central engine of the source. In this work, a lepto-hadronic one-zone model is applied to the available multiwavelength data of M87. The different energy losses for both primary and secondary particles are calculated. Then, the different contributions to the spectral energy distribution through interactions with matter, radiation and magnetic fields are obtained, in good accordance with the observations.

2019 ◽  
Vol 623 ◽  
pp. A2 ◽  
Author(s):  
Faical Ait Benkhali ◽  
Nachiketa Chakraborty ◽  
Frank M. Rieger

Context. In recent years, non-blazar active galactic nuclei (AGN) such as radio galaxies have emerged as a highly instructive source class providing unique insights into high energy acceleration and radiation mechanisms. Aims. Here we aim to produce a detailed characterization of the high-energy (HE; >100 MeV) gamma-ray emission from the prominent radio galaxy M 87. Methods. We analyzed approximately eight years of Fermi-LAT data and derived the spectral energy distribution between 100 MeV and 300 GeV. We extracted lightcurves and investigated the variability behavior for the entire energy range as well as below and above 10 GeV. Results. Our analysis provides (i) evidence for HE gamma-ray flux variability and (ii) indications for a possible excess over the standard power-law model above Eb ∼ 10 GeV, similar to the earlier indications in the case of Cen A. When viewed in HE–VHE context, this is most naturally explained by an additional component dominating the highest-energy part of the spectrum. Investigation of the γ-ray lightcurves suggests that the lower-energy (<10 GeV) component is variable on timescales of (at least) a few months. The statistics of the high energy component (>10 GeV) does not allow significant constraints on variability. We do, however, find indications for spectral changes with time that support variability of the putative additional component and seem to favor jet-related scenarios for its origin capable of accommodating month-type variability. Conclusions. The current findings suggest that both the high-energy (>Eb) and the very high energy (VHE; >100 GeV) emission in M 87 are compatible with originating from the same physical component. The variability behavior at VHE then allows further constraints on the location and the nature of the second component. In particular, these considerations suggest that the VHE emission during the quiescent state originates in a similar region as during the flare.


2001 ◽  
Vol 204 ◽  
pp. 151-151
Author(s):  
A. Konopelko

The spectral distribution of the extragalactic background light (EBL) in the infrared yields important information about the evolution of galaxies. The spectrum of a galaxy in the 0.1–200 μm region is a footprint of the intrinsic starlight at ~ 1μm and its extinction by dust with re-emission at ~ 100 μm. The overall spectral energy distribution of the EBL is then determined by the galaxy luminosity evolution. High-energy γ-rays are absorbed by the EBL photons through γγ → e+e- reactions. Such an effect has been seen recently in the Mkn 501 TeV spectrum measured by the HEGRA (High Energy Gamma Ray Astronomy) collaboration using an advanced system of imaging atmospheric Čerenkov telescopes (IACTs). The intrinsic spectra of AGNs in the 50 GeV-1 TeV energy range may be constrained by the X-ray fluxes measured with satellite instruments aboard missions such as RXTE, XMM, and ASCA. By reducing the energy threshold down to 50 GeV, forthcoming ground-based IACTs systems (CANGAROO IV, H.E.S.S., VERITAS) may be able to study the absorption cutoff in energy spectra of distant AGNs (z< 0.4), to unfold the true galaxy luminosity evolution function.


2014 ◽  
Vol 28 ◽  
pp. 1460182
Author(s):  
NAREK SAHAKYAN ◽  
FRANK M. RIEGER ◽  
FELIX AHARONIAN ◽  
RUIZHI YANG ◽  
EMMA DE ONA-WILHELMI

We summarize recent results based on an analysis of Fermi-LAT data for the lobes and the core of the nearby radio galaxy Centaurus A (Cen A). In the case of the core, high-energy (HE; > 100 MeV) γ-rays up to 50 GeV have been detected with a detection significance of about 44σ. The average gamma-ray spectrum of the core reveals interesting evidence for a possible deviation from a simple power-law. A likelihood analysis with a broken power-law model shows that the photon index becomes substantially harder above Eb ≃ 4 GeV, changing from Γ1 = 2.74 ± 0.03 below to Γ2 = 2.09 ± 0.20 above. It seems possible that this hardening marks the contribution of an additional high-energy component beyond the common synchrotron-self Compton jet emission. In the case of the lobes, the high-energy gamma-ray emission extends up to 6 GeV, with a significance of more than 10 and 20 σ for the north and the south lobe, respectively. Based on a detailed spatial analysis and comparison with the associated radio lobes, a substantial extension of the HE γ-ray emission beyond the WMAP radio image for the northern lobe of Cen A is found. We provide a short discussion of the lobe's spectral energy distribution (SED) in the context of hadronic and time-dependent leptonic scenarios.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844007
Author(s):  
S. Gasparyan ◽  
N. Sahakyan ◽  
P. Chardonnet

The discovery of very-high-energy gamma-ray emission from Flat Spectrum Radio Quasars (FSRQs) by ground-based Cherenkov telescopes (HESS, MAGIC, VERITAS) provides a new view of blazar emission processes. The available data from multiwavelength observations of FSRQs, allow us to constrain the size (possibly also location) of the emitting region, magnetic field, electron energy distribution, etc., which are crucial for the understanding of the jet properties. We investigate the origin of emission from FSRQs (PKS 1510-089, PKS 1222+216 and 3C 279) by modeling the broadband spectral energy distribution in their quiescent and flaring states, using estimation of the parameter space that describes the underlying particle distribution responsible for the emission through the Markov Chain Monte Carlo (MCMC) technique.


2016 ◽  
Vol 12 (S324) ◽  
pp. 164-167
Author(s):  
C. Arcaro ◽  
P. Bangale ◽  
M. Manganaro ◽  
D. Mazin ◽  
P. Colin ◽  
...  

AbstractWe present the preliminary results from observing the nearby radio galaxy M 87 for 156 hours (between the years 2012 and 2015) with the MAGIC telescopes, which lead to a significant very high energy (VHE, E > 100 GeV) detection of the source in quiescent states each year. Our VHE analysis combined with quasi-simultaneous data at other energies (from gamma-rays, X-rays, optical and radio) provides a unique opportunity to study the source variability and its broadband spectral energy distribution, which is found to disfavour a one-zone synchrotron/synchrotron self-Compton model. Therefore, other alternative scenarios for the photon emission are explored. We also find that the VHE emission is compatible with being produced close to the source radio core as previous data already indicated. A detailed paper presenting full results of the observing campaign is in preparation.


2019 ◽  
Vol 207 ◽  
pp. 02001
Author(s):  
Anna Franckowiak

In September 22, 2017, IceCube released a public alert announcing the detection of a 290 TeV neutrino track event with an angular uncertainty of one square degree (90% containment). A multi-messenger follow-up campaign was initiated resulting in the detection of a GeV gamma-ray flare by the Fermi Large Area Telescope positionally consistent with the location of the known Bl Lac object, TXS 0506+056 , located only 0.1 degrees from the best-fit neutrino position. The probability of finding a GeV gamma-ray flare in coincidence with a high-energy neutrino event assuming a correlation of the neutrino flux with the gamma-ray energy flux in the energy band between 1 and 100 GeV was calculated to be 3σ (after trials correction). Following the detection of the flaring blazar the imaging air Cherenkov telescope MAGIC detected the source for the first time in the > 100 GeV gamma-ray band. The activity of the source was confirmed in X-ray, optical and radio wavelength. Several groups have developed lepto-hadronic models which succeed to explain the multi-messenger spectral energy distribution.


2020 ◽  
Vol 493 (2) ◽  
pp. 2438-2451
Author(s):  
B Arsioli ◽  
Y-L Chang ◽  
B Musiimenta

ABSTRACT This paper presents the results of a γ-ray likelihood analysis over all the extreme and high synchrotron peak blazars (EHSP and HSP) from the 3HSP catalogue. We investigate 2013 multifrequency positions under the eyes of Fermi Large Area Telescope, considering 11 yr of observations in the energy range between 500 MeV and 500 GeV, which results in 1160 γ-ray signatures detected down to the TS=9 threshold. The detections include 235 additional sources concerning the Fermi Large Area Telescope Fourth Source Catalog (4FGL), all confirmed via high-energy TS (Test Statistic) maps, and represent an improvement of ∼25 per cent for the number of EHSP and HSP currently described in γ-rays. We build the γ-ray spectral energy distribution (SED) for all the 1160 2BIGB sources, plot the corresponding γ-ray logN−logS, and measure their total contribution to the extragalactic gamma-ray background, which reaches up to ∼33 per cent at 100 GeV. Also, we show that the γ-ray detectability improves according to the synchrotron peak flux as represented by the figure of merit parameter, and note that the search for TeV peaked blazars may benefit from considering HSP and EHSP as a whole, instead of EHSPs only. The 2BIGB acronym stands for ‘Second Brazil-ICRANet Gamma-ray Blazars’ catalogue, and all the broad-band models and SED data points will be available on public data repositories (OpenUniverse, GitHub, and Brazilian Science Data Center-BSDC).


Author(s):  
M Lucchini ◽  
F Krauß ◽  
S Markoff

Abstract M87 hosts one of the closest jetted active galactic nucleus (AGN) to Earth. Thanks to its vicinity and to the large mass of is central black hole, M87 is the only source in which the jet can be directly imaged down to near-event horizon scales with radio very large baseline interferometry (VLBI). This property makes M87 a unique source to isolate and study jet launching, acceleration and collimation. In this paper we employ a multi-zone model designed as a parametrisation of general relativistic magneto-hydrodynamics (GRMHD); for the first time we reproduce the jet’s observed shape and multi-wavelength spectral energy distribution (SED) simultaneously. We find strong constraints on key physical parameters of the jet, such as the location of particle acceleration and the kinetic power. However, we under-predict the (unresolved) γ-ray flux of the source, implying that the high-energy emission does not originate in the magnetically-dominated inner jet regions. Our results have important implications both for comparisons of GRMHD simulations with observations, and for unified models of AGN classes.


2010 ◽  
Vol 27 (4) ◽  
pp. 431-438 ◽  
Author(s):  
H. Steinle

AbstractCen A, at a distance of less than 4 Mpc, is the nearest radio-loud AGN. Its emission is detected from radio to very-high energy gamma-rays. Despite the fact that Cen A is one of the best studied extragalactic objects the origin of its hard X-ray and soft gamma-ray emission (100 keV <E< 50 MeV) is still uncertain. Observations with high spatial resolution in the adjacent soft X-ray and hard gamma-ray regimes suggest that several distinct components such as a Seyfert-like nucleus, relativistic jets, and even luminous X-ray binaries within Cen A may contribute to the total emission in the MeV regime that has been detected with low spatial resolution. As the Spectral Energy Distribution of Cen A has its second maximum around 1 MeV, this energy range plays an important role in modeling the emission of (this) AGN. As there will be no satellite mission in the near future that will cover this energies with higher spatial resolution and better sensitivity, an overview of all existing hard X-ray and soft gamma-ray measurements of Cen A is presented here defining the present knowledge on Cen A in the MeV energy range.


Author(s):  
N. V. SAHAKYAN

The results of analysis of approximately 3 year gamma-ray observations (August 2008–July 2011) of the core of radio galaxy Centaurus A with the Fermi Large Area Telescope (Fermi LAT) are presented. Binned likelihood analysis method applying to the data shows that below several GeV the spectrum can be described by a single power-law with photon index Γ = 2.73 ± 0.06. However, at higher energies the new data show significant excess above the extrapolation of the energy spectrum from low energies. The comparison of the corresponding Spectral Energy Distribution (SED) at GeV energies with the SED in the TeV energy band reported by the H.E.S.S. collaboration shows that we deal with two or perhaps even three components of gamma-radiation originating from different regions located within the central 10 kpc of Centaurus A. The analysis of gamma-ray data of Centaurus A lobe accumulated from the beginning of the operation until November 14, 2011 show extension of the HE gamma-ray emission beyond the WMAP radio image in the case of the Northern lobe [9]. The possible origins of gamma-rays from giant radio lobes of Centaurus A are discussed in the context of hadronic and leptonic scenarios.


Sign in / Sign up

Export Citation Format

Share Document