scholarly journals CONDITIONS FOR SPONTANEOUS HOMOGENIZATION OF THE UNIVERSE

2010 ◽  
Vol 19 (14) ◽  
pp. 2405-2412 ◽  
Author(s):  
KRZYSZTOF BOLEJKO ◽  
WILLIAM R. STOEGER

The present-day universe appears to be homogeneous on very-large scales. Yet when the casual structure of the early universe is considered, it becomes apparent that the early universe must have been highly inhomogeneous. The current paradigm attempts to answer this problem by postulating the inflation mechanism. However, inflation in order to start requires a homogeneous patch of at least the horizon size. This paper examines if dynamical processes of the early universe could lead to homogenization. In the past similar studies seem to imply that the set of initial conditions that leads to homogenization is of measure zero. This essay proves the contrary: a set of initial conditions for spontaneous homogenization of cosmological models can form a set of nonzero measure.

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 276
Author(s):  
Muhammad Zahid Mughal ◽  
Iftikhar Ahmad ◽  
Juan Luis García Guirao

In this review article, the study of the development of relativistic cosmology and the introduction of inflation in it as an exponentially expanding early phase of the universe is carried out. We study the properties of the standard cosmological model developed in the framework of relativistic cosmology and the geometric structure of spacetime connected coherently with it. The geometric properties of space and spacetime ingrained into the standard model of cosmology are investigated in addition. The big bang model of the beginning of the universe is based on the standard model which succumbed to failure in explaining the flatness and the large-scale homogeneity of the universe as demonstrated by observational evidence. These cosmological problems were resolved by introducing a brief acceleratedly expanding phase in the very early universe known as inflation. The cosmic inflation by setting the initial conditions of the standard big bang model resolves these problems of the theory. We discuss how the inflationary paradigm solves these problems by proposing the fast expansion period in the early universe. Further inflation and dark energy in fR modified gravity are also reviewed.


2001 ◽  
Vol 10 (06) ◽  
pp. 785-790 ◽  
Author(s):  
JOHN D. BARROW ◽  
HIDEO KODAMA

If the topology of the universe is compact we show how it significantly changes our assessment of the naturalness of the observed structure of the universe and the likelihood of its present state of high isotropy and near flatness arising from generic initial conditions. We also identify the most general cosmological models with compact space.


1982 ◽  
Vol 60 (5) ◽  
pp. 659-663 ◽  
Author(s):  
J. W. Moffat ◽  
D. Vincent

The standard Friedmann–Robertson–Walker (FRW) big-bang model of the universe requires special initial conditions: the early universe is highly homogeneous and isotropic even though there exist causally disconnected regions (horizon problem). A plane symmetric (anisotropic) solution of a system of field equations in a generalized theory of gravitation, predicts the beginning of the universe as a vacuum instability at a specific fundamental time (which can be associated with the Planck time (tp)), after which matter is created as the universe begins to expand. At a time t = tc there is a singular expansion, the anisotropy vanishes, and the physical horizon becomes infinite. Thereafter the solution of the field equations goes over into the FRW model. Thus the special initial conditions of the FRW model at the big-bang singularity t = tc are predicted by the theory.


Author(s):  
Muhammad Zahid Mughal ◽  
Iftikhar Ahmad ◽  
Juan Luis GARCÍA GUIRAO

In this review article the study of the development of relativistic cosmology and introduction of inflation in it is carried out. We study the properties of standard cosmological model developed in the framework of relativistic cosmology and the geometric structure of spacetime connected coherently with it. We examine the geometric properties of space and spacetime ingrained into the standard model of cosmology. The big bang model of the beginning of the universe is based on the standard model which succumbed to failure in explaining the flatness and the large-scale homogeneity of the universe as demonstrated by observational evidence. These cosmological problems were resolved by introducing a brief acceleratedly expanding phase in the very early universe known as inflation. Cosmic inflation by setting the initial conditions of the standard big bang model resolves these problems of the theory. We discuss how the inflationary paradigm solves these problems by proposing the fast expansion period in the early universe.


1974 ◽  
Vol 63 ◽  
pp. 167-173
Author(s):  
R. A. Sunyaev

Many of the cosmological models currently under discussion and theories of the origin of galaxies which involve antimatter, strong turbulence and so on result in significant energy release during the evolution of the Universe. It is evident that significant energy production should lead to distortions of the spectrum of the relic radiation. The absence of noticeable deviations from the Planckian spectrum enables us to set limits to the energy release in the early Universe (102 < z< 108). But in order to have a clear picture of possible distortions, let us first review the idealized situation.


1974 ◽  
Vol 64 ◽  
pp. 184-184
Author(s):  
Bernard J. Carr ◽  
Stephen W. Hawking

The existence of galaxies indicates that the early universe must have been inhomogeneous and might have been highly chaotic. This could have lead to regions of the size of the particle horizon undergoing gravitational collapse to produce black holes with initial masses from 10-5 g upwards. Radiation pressure in the early Universe would cause these black holes to grow by accretion. However, despite previous expectations, this accretion would not be very much unless the initial conditions of the Universe were arranged in a special and a causal manner. Observations indicate that, at the most, only a small fraction of the matter in the early Universe can have undergone gravitational collapse.


Author(s):  
William Lane Craig

A survey of recent philosophical literature on the kalam cosmological argument reveals that arguments for the finitude of the past and, hence, the beginning of the universe remain robust. Plantinga’s brief criticisms of Kant’s argument in his First Antinomy concerning time are shown not to be problematic for the kalam argument. This chapter addresses, one by one, the two premises of the kalam, focusing on their philosophical aspects. The notion of infinity, both actual and potential, is discussed in relation to the coming into being of the universe. In addition, the scientific aspects of the two premises are also, briefly, addressed. Among these are the Borde-Guth-Vilenkin theorem, which proves that classical space-time cannot be extended to past infinity but must reach a boundary at some time in the finite past. This, among other factors, lends credence to the kalam argument’s second premise.


Author(s):  
Gianfranco Pacchioni

About 10,000 years ago, at the beginning of the agriculturalrevolution, on the whole earth lived between 5 and 8 million hunter-gatherers, all belonging to the Homo sapiens species. Five thousand years later, freed from the primary needs for survival, some belonging to that species enjoyed the privilege of devoting themselves to philosophical speculation and the search for transcendental truths. It was only in the past two hundred years, however, with the advent of the Industrial Revolution, that reaping nature’s secrets and answering fundamental questions posed by the Universe have become for many full-time activities, on the way to becoming a real profession. Today the number of scientists across the globe has reached and exceeded 10 million, that is, more than the whole human race 10,000 years ago. If growth continues at the current rate, in 2050 we will have 35 million people committed full-time to scientific research. With what consequences, it remains to be understood. For almost forty years I myself have been concerned with science in a continuing, direct, and passionate way. Today I perceive, along with many colleagues, especially of my generation, that things are evolving and have changed deeply, in ways unimaginable until a few years ago and, in some respects, not without danger. What has happened in the world of science in recent decades is more than likely a mirror of a similar and equally radical transformation taking place in modern society, particularly with the advent ...


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


Author(s):  
Donald C. Williams

This chapter is about the arrow or direction of time against the backdrop of the pure manifold theory. It is accepted that the fact that time has a direction ought to be explained. It is proposed that the arrow of time is grounded in deeper facts about the four-dimensional nature of each object in the manifold and in facts about the overall four-dimensional shape of the universe. Towards the end of the chapter the possibility of time travel is discussed. It is argued that time travel is metaphysically possible and that there is a reasonable and intelligible sense in which a time traveler can and cannot change the past, according to the pure manifold theory.


Sign in / Sign up

Export Citation Format

Share Document