scholarly journals EXPLAINING THE SUPERNOVA DATA WITHOUT ACCELERATING EXPANSION

2012 ◽  
Vol 21 (11) ◽  
pp. 1242021 ◽  
Author(s):  
W. M. STUCKEY ◽  
T. J. McDEVITT ◽  
M. SILBERSTEIN

The 2011 Nobel Prize in Physics was awarded "for the discovery of the accelerating expansion of the universe through observations of distant supernovae." However, it is not the case that the type Ia supernova data necessitates accelerating expansion. Since we do not have a successful theory of quantum gravity, we should not assume general relativity (GR) will survive unification intact, especially on cosmological scales where tests are scarce. We provide a simple example of how GR cosmology may be modified to produce a decelerating Einstein-de Sitter cosmology (EdS) that accounts for the Union2 Compilation data as well as the accelerating ΛCDM (EdS plus a cosmological constant).

2008 ◽  
Vol 86 (4) ◽  
pp. 591-595
Author(s):  
K Schleich ◽  
D M Witt

Recent observations in cosmology indicate an accelerating expansion of the Universe postulated to arise from some form of dark energy, the paradigm being positive cosmological constant. De Sitter spacetime is the well-known isotropic solution to the Einstein equations with cosmological constant. However, as discussed here, it is not the most general, locally isotropic solution. One can construct an infinite family of such solutions, designer de Sitter spacetimes, which are everywhere locally isometric to a region of de Sitter spacetime. However, the global dynamics of these designer cosmologies is very different than that of de Sitter spacetime itself. The construction and dynamics of these designer de Sitter spacetimes is detailed along with some comments about their implications for the structure of our Universe.PACS Nos.: 04.20.–q, 04.20.Ex, 04.20.Gz, 98.80.–k


2010 ◽  
Vol 19 (14) ◽  
pp. 2281-2287 ◽  
Author(s):  
ISHWAREE P. NEUPANE

Generic cosmological models derived from higher-dimensional theories with warped extra-dimensions have a nonzero cosmological constant-like term induced on the 3 + 1 space–time, or a physical three-brane. In the scenario where this 3 + 1 space–time is an inflating de Sitter "bran" embedded in a higher-dimensional space–time, described by warped geometry, the four-dimensional cosmological term is determined in terms of two length scales: one is a scale associated with the size of extra-dimension(s) and the other is a scale associated with the warping of extra-space(s). The existence of this term in four dimensions provides a tantalizing possibility of explaining the observed accelerating expansion of the universe from fundamental theories of gravity, e.g. string theory.


2020 ◽  
pp. 2050334
Author(s):  
P. B. Krishna ◽  
Titus K. Mathew

The spacial expansion of the universe could be described as a tendency for satisfying holographic equipartition which inevitably demands the presence of dark energy. We explore whether this novel idea proposed by Padmanabhan gives any additional insights into the nature of dark energy. In particular, we obtain the constraints imposed by the law of emergence on the equation of state parameter, [Formula: see text]. We also present a thermodynamic motivation for the obtained constraints on [Formula: see text]. Further, we explicitly prove the feasibility of describing a dynamic dark energy model through the law of emergence. Interestingly, both holographic equipartition and the entropy maximization demand an asymptotically de Sitter universe with [Formula: see text], rather than a pure cosmological constant.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 363
Author(s):  
Per Berglund ◽  
Tristan Hübsch ◽  
Djordje Minic

Finding four-dimensional de Sitter spacetime solutions in string theory has been a vexing quest ever since the discovery of the accelerating expansion of the universe. Building on a recent analysis of bubble-nucleation in the decay of (false-vacuum) AdS backgrounds where the interfacing bubbles themselves exhibit a de Sitter geometry we show that this resonates strongly with a stringy cosmic brane construction that naturally provides for an exponential mass-hierarchy and the localization of both gravity and matter, in addition to an exponentially suppressed positive cosmological constant. Finally, we argue that these scenarios can be realized in terms of a generalization of a small resolution of a conifold singularity in the context of a (Lorentzian) Calabi–Yau 5-fold, where the isolated (Lorentzian) two complex dimensional Fano variety is a four-dimensional de Sitter spacetime.


2015 ◽  
Vol 30 (22) ◽  
pp. 1540033 ◽  
Author(s):  
Steven D. Bass

The accelerating expansion of the Universe points to a small positive value for the cosmological constant or vacuum energy density. We discuss recent ideas that the cosmological constant plus Large Hadron Collider (LHC) results might hint at critical phenomena near the Planck scale.


2012 ◽  
Vol 18 ◽  
pp. 109-114
Author(s):  
M. D. MAIA

It is shown that topological changes in space-time are necessary to make General Relativity compatible with the Newtonian limit and to solve the hierarchy of the fundamental interactions. We detail how topology and topological changes appear in General Relativity and how it leaves an observable footprint in space-time. In cosmology we show that such topological observable is the cosmic radiation produced by the acceleration of the universe. The cosmological constant is a very particular case which occurs when the expansion of the universe into the vacuum occurs only in the direction of the cosmic time flow.


2011 ◽  
Vol 20 (supp01) ◽  
pp. 65-72
Author(s):  
JORGE ALFARO

We study a model of the gravitational field based on two symmetric tensors. The equations of motion of test particles are derived. We explain how the Equivalence principle is recovered. Outside matter, the predictions of the model coincide exactly with General Relativity, so all classical tests are satisfied. In Cosmology, we get accelerated expansion without a cosmological constant.


Author(s):  
Silvia Nagy ◽  
Antonio Padilla ◽  
Ivonne Zavala

Understanding de Sitter space in supergravity—and string theory—has led to an intense amount of work for more than two decades, largely motivated by the discovery of the accelerated expansion of the Universe in 1998. In this paper, we consider a non-trivial generalization of unimodular gravity to minimal N = 1 supergravity, which allows for de Sitter solutions without the need of introducing any matter. We formulate a superspace version of the Stückelberg procedure, which restores diffeomorphism and local supersymmetry invariance. This introduces the goldstino associated with spontaneous breaking of supersymmetry in a natural way. The cosmological constant and gravitino mass are related to the vacuum expectation value of the components of a Lagrange multiplier imposing a super-unimodularity condition.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550037 ◽  
Author(s):  
Carlos Castro

A Clifford-gravity-based model is exploited to build a generalized action (beyond the current ones used in the literature) and arrive at relevant numerical results which are consistent with the presently-observed de Sitter accelerating expansion of the universe driven by a very small vacuum energy density ρ obs ~ 10-120(MP)4 (MP is the Planck mass) and provide promising dark energy/matter candidates in terms of the 16 scalars corresponding to the degrees of freedom associated with a Cl (3, 1)-algebra-valued scalar field Φ in four dimensions.


2018 ◽  
Vol 17 (1) ◽  
pp. 25-32
Author(s):  
Louise Rebecca ◽  
C Sivaram ◽  
Kenath Arun

One of the unresolved problems in cosmology is that the measured mass density of the universe has revealed a value that was about 30% of the critical density. Since the universe is very nearly spatially flat, as is indicated by measurements of the cosmic microwave background, about 70% of the energy density of the universe was left unaccounted for. Another observation seems to be connected to this mystery. Generally one would expect the rate of expansion to slow down once the universe started expanding. The measurements of Type Ia supernovae have revealed that the expansion of the universe is actually accelerating. This accelerated expansion is attributed to the so-called dark energy (DE).Here we give a brief overview on the observational basis for DE hypothesis and how cosmological constant, initially proposed by Einstein to obtain a static universe, can play the role of dark energy.


Sign in / Sign up

Export Citation Format

Share Document