A Clifford-gravity-based cosmology, dark matter and dark energy

2015 ◽  
Vol 12 (03) ◽  
pp. 1550037 ◽  
Author(s):  
Carlos Castro

A Clifford-gravity-based model is exploited to build a generalized action (beyond the current ones used in the literature) and arrive at relevant numerical results which are consistent with the presently-observed de Sitter accelerating expansion of the universe driven by a very small vacuum energy density ρ obs ~ 10-120(MP)4 (MP is the Planck mass) and provide promising dark energy/matter candidates in terms of the 16 scalars corresponding to the degrees of freedom associated with a Cl (3, 1)-algebra-valued scalar field Φ in four dimensions.

2019 ◽  
Vol 28 (14) ◽  
pp. 1944002 ◽  
Author(s):  
Spyros Basilakos ◽  
Nick E. Mavromatos ◽  
Joan Solà Peracaula

We present a string-based picture of the cosmological evolution in which (CP-violating) gravitational anomalies acting during the inflationary phase of the universe cause the vacuum energy density to “run” with the effective Hubble parameter squared, [Formula: see text], thanks to the axion field of the bosonic string multiplet. This leads to baryogenesis through leptogenesis with massive right-handed neutrinos. The generation of chiral matter after inflation helps in cancelling the anomalies in the observable radiation- and matter-dominated eras. The present era inherits the same “running vacuum” structure triggered during the inflationary time by the axion field. The current dark energy is thus predicted to be mildly dynamical, and dark matter should be made of axions. Paraphrasing Carl Sagan [ https://www.goodreads.com/author/quotes/10538.Carl_Sagan .]: we are all anomalously made from starstuff.


2012 ◽  
Vol 07 ◽  
pp. 194-201
Author(s):  
NOBUYOSHI OHTA

We argue that the dark energy that explains the observed accelerating expansion of the universe may arise due to the contribution to the vacuum energy of the QCD ghost in a time-dependent background. We show that the QCD ghost produces dark energy proportional to the Hubble parameter [Formula: see text] (ΛQCD is the QCD mass scale) which has the right magnitude ~ (3 × 10-3 eV)4.


2010 ◽  
Vol 19 (14) ◽  
pp. 2281-2287 ◽  
Author(s):  
ISHWAREE P. NEUPANE

Generic cosmological models derived from higher-dimensional theories with warped extra-dimensions have a nonzero cosmological constant-like term induced on the 3 + 1 space–time, or a physical three-brane. In the scenario where this 3 + 1 space–time is an inflating de Sitter "bran" embedded in a higher-dimensional space–time, described by warped geometry, the four-dimensional cosmological term is determined in terms of two length scales: one is a scale associated with the size of extra-dimension(s) and the other is a scale associated with the warping of extra-space(s). The existence of this term in four dimensions provides a tantalizing possibility of explaining the observed accelerating expansion of the universe from fundamental theories of gravity, e.g. string theory.


2015 ◽  
Vol 30 (22) ◽  
pp. 1540033 ◽  
Author(s):  
Steven D. Bass

The accelerating expansion of the Universe points to a small positive value for the cosmological constant or vacuum energy density. We discuss recent ideas that the cosmological constant plus Large Hadron Collider (LHC) results might hint at critical phenomena near the Planck scale.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Harald Fritzsch ◽  
Joan Solà

In quantum haplodynamics (QHD) the weak bosons, quarks, and leptons are bound states of fundamental constituents, denoted as haplons. The confinement scale of the associated gauge groupSU(2)his of the order ofΛh≃0.3 TeV. One scalar state has zero haplon number and is the resonance observed at the LHC. In addition, there exist new bound states of haplons with no counterpart in the SM, having a mass of the order of 0.5 TeV up to a few TeV. In particular, a neutral scalar state with haplon number 4 is stable and can provide the dark matter in the universe. The QHD, QCD, and QED couplings can unify at the Planck scale. If this scale changes slowly with cosmic time, all of the fundamental couplings, the masses of the nucleons and of the DM particles, including the cosmological term (or vacuum energy density), will evolve with time. This could explain the dark energy of the universe.


Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (“darks”) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect to the extent that the numerical value of Milgrom’s acceleration constant can be assessed by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy. The result is a quantum mechanical interpretation of gravity in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model..


2014 ◽  
Vol 23 (06) ◽  
pp. 1430012 ◽  
Author(s):  
Charles Baltay

The recent discovery by Riess et al.1 and Perlmutter et al.2 that the expansion of the universe is accelerating is one of the most significant discoveries in cosmology in the last few decades. To explain this acceleration a mysterious new component of the universe, dark energy, was hypothesized. Using general relativity (GR), the measured rate of acceleration translates to the present understanding that the baryonic matter, of which the familiar world is made of, is a mere 4% of the total mass-energy of the universe, with nonbaryonic dark matter making up 24% and dark energy making up the majority 72%. Dark matter, by definition, has attractive gravity, and even though we presently do not know what it is, it could be made of the next heavy particles discovered by particle physicists. Dark energy, however, is much more mysterious, in that even though we do not know what it is, it must have some kind of repulsive gravity and negative pressure, very unusual properties that are not part of the present understanding of physics. Investigating the nature of dark energy is therefore one of the most important areas of cosmology. In this review, the cosmology of an expanding universe, based on GR, is discussed. The methods of studying the acceleration of the universe, and the nature of dark energy, are presented. A large amount of experimentation on this topic has taken place in the decade since the discovery of the acceleration. These are discussed and the present state of knowledge of the cosmological parameters is summarized in Table 7 below. A vigorous program to further these studies is under way. These are presented and the expected results are summarized in Table 10 below. The hope is that at the end of this program, it would be possible to tell whether dark energy is due to Einstein's cosmological constant or is some other new constituent of the universe, or alternately the apparent acceleration is due to some modification of GR.


2007 ◽  
Vol 16 (10) ◽  
pp. 1641-1651 ◽  
Author(s):  
RAM GOPAL VISHWAKARMA

Dark energy and the accelerated expansion of the universe have been the direct predictions of the distant supernovae Ia observations which are also supported, indirectly, by the observations of the CMB anisotropies, gravitational lensing and the studies of galaxy clusters. Today these results are accommodated in what has become the concordance cosmology: a universe with flat spatial sections t = constant with about 70% of its energy in the form of Einstein's cosmological constant Λ and about 25% in the form of dark matter (made of perhaps weakly-interacting massive particles). Though the composition is weird, the theory has shown remarkable successes at many fronts. However, we find that as more and more supernovae Ia are observed, more accurately and towards higher redshift, the probability that the data are well-explained by the cosmological models decreases alarmingly, finally ruling out the concordance model at more than 95% confidence level. This raises doubts against the "standard candle"-hypothesis of the supernovae Ia and their use in constraining the cosmological models. We need a better understanding of the entire SN Ia phenomenon in order to extract cosmological consequences from them.


2004 ◽  
Vol 19 (02) ◽  
pp. 117-134 ◽  
Author(s):  
MANASSE R. MBONYE

The early cosmic inflation, when taken along with the recent observations that the universe is currently dominated by a low density vacuum energy, leads to at least two potential problems which modern cosmology must address. First, there is the old cosmological constant problem, with a new twist: the coincidence problem. Secondly, cosmology still lacks a model to predict the observed current cosmic acceleration and to determine whether or not there is a future exit out of this state (as previously in the inflationary case). This constitutes (what is called here) a dynamical problem. Here a framework is proposed to address these two problems, based on treating the cosmic background vacuum (dark) energy as both dynamical and interacting. The universe behaves as a vacuum-driven cosmic engine which, in search of equilibrium, always back-reacts to vacuum-induced accelerations by increasing its inertia (internal energy) through vacuum energy dissipation. The process couples cosmic vacuum (dark) energy to matter to produce future-directed increasingly comparable amplitudes in these fields by setting up oscillations in the decaying vacuum energy density and corresponding sympathetic ones in the matter fields. By putting bounds on the relative magnitudes of these coupled oscillations the model offers a natural and conceptually simple channel to discuss the coincidence problem, while also suggesting a way to deal with the dynamical problem. A result with important observational implications is an equation of state w(t) which specifically predicts a variable, quasi-periodic, acceleration for the current universe. This result can be directly tested by future observational techniques such as SNAP.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Giovanni Otalora

Although equivalent to general relativity, teleparallel gravity (TG) is conceptually speaking a completely different theory. In this theory, the gravitational field is described by torsion, not by curvature. By working in this context, a new model is proposed in which the four-derivative of a canonical scalar field representing dark energy is nonminimally coupled to the “vector torsion”. This type of coupling is motivated by the fact that a scalar field couples to torsion through its four-derivative, which is consistent with local spacetime kinematics regulated by the de Sitter group [Formula: see text]. It is found that the current state of accelerated expansion of the universe corresponds to a late-time attractor that can be (i) a dark energy-dominated de Sitter solution ([Formula: see text]), (ii) a quintessence-type solution with [Formula: see text], or (iii) a phantom-type [Formula: see text] dark energy.


Sign in / Sign up

Export Citation Format

Share Document