scholarly journals Time-dependent particle production and particle number in cosmological de Sitter space

2015 ◽  
Vol 24 (05) ◽  
pp. 1550031 ◽  
Author(s):  
Eric Greenwood

In this paper, we consider the occupation number of induced quasi-particles which are produced during a time-dependent process using three different methods: Instantaneous diagonalization, the usual Bogolyubov transformation between two different vacua (more precisely the instantaneous vacuum and the so-called adiabatic vacuum), and the Unruh–DeWitt detector methods. Here we consider the Hamiltonian for a time-dependent Harmonic oscillator, where both the mass and frequency are taken to be time-dependent. From the Hamiltonian we derive the occupation number of the induced quasi-particles using the invariant operator method. In deriving the occupation number we also point out and make the connection between the Functional Schrödinger formalism, quantum kinetic equation, and Bogolyubov transformation between two different Fock space basis at equal times and explain the role in which the invariant operator method plays. As a concrete example, we consider particle production in the flat FRW chart of de Sitter spacetime. Here we show that the different methods lead to different results: The instantaneous diagonalization method leads to a power law distribution, while the usual Bogolyubov transformation and Unruh–DeWitt detector methods both lead to thermal distributions (however the dimensionality of the results are not consistent with the dimensionality of the problem; the usual Bogolyubov transformation method implies that the dimensionality is 3D while the Unruh–DeWitt detector method implies that the dimensionality is 7D/2). It is shown that the source of the descrepency between the instantaneous diagonalization and usual Bogolyubov methods is the fact that there is no notion of well-defined particles in the out vacuum due to a divergent term. In the usual Bogolyubov method, this divergent term cancels leading to the thermal distribution, while in the instantaneous diagonalization method there is no such cancelation leading to the power law distribution. However, to obtain the thermal distribution in the usual Bogolyubov method, one must use the large mass limit. On physical grounds, one should expect that only the modes which have been allowed to sample the horizon would be thermal, thus in the large mass limit these modes are well within the horizon and, even though they do grow, they remain well within the horizon due to the mass. Thus, one should not expect a thermal distribution since the modes will not have a chance to thermalize.

2016 ◽  
Vol 30 (12) ◽  
pp. 1650122 ◽  
Author(s):  
I. A. Pedrosa ◽  
E. Nogueira ◽  
I. Guedes

We discuss the problem of a mesoscopic LC circuit with a negative inductance ruled by a time-dependent Hermitian Hamiltonian. Classically, we find unusual expressions for the Faraday’s law and for the inductance of a solenoid. Quantum mechanically, we solve exactly the time-dependent Schrödinger equation through the Lewis and Riesenfeld invariant operator method and construct Gaussian wave packet solutions for this time-dependent LC circuit. We also evaluate the expectation values of the charge and the magnetic flux in these Gaussian states, their quantum fluctuations and the corresponding uncertainty product.


Author(s):  
SANG PYO KIM

We revisit the Hamiltonian formalism for a massive scalar field and study the particle production in a de Sitter space. In the invariant-operator picture the time-dependent annihilation and creation operators are constructed in terms of a complex solution to the classical equation of motion for the field and the Gaussian wave function for each Fourier mode is found which is an exact solution to the Schrödinger equation. The in-out formalism is reformulated by the annihilation and creation operators and the Gaussian wave functions. The de Sitter radiation from the in-out formalism differs from the Gibbons-Hawking radiation in the planar coordinates, and we discuss the discrepancy of the particle production by the two methods.


2002 ◽  
Vol 16 (31) ◽  
pp. 4733-4742 ◽  
Author(s):  
JEONG RYEOL CHOI ◽  
BO HA KWEON

We used dynamical invariant operator method to find the quantum mechanical solution of a harmonic plus inverse harmonic oscillator with time-dependent coefficients. The eigenvalue of invariant operator is obtained and is constant with time. We constructed lowering and raising operators from the invariant operator. The solution of Schrödinger equation is obtained using operator method. We have also used ladder operators to obtain various expectation values of the time-dependent system. The results in this manuscript are not only more general than the existing results in the literatures but also well match with others.


2006 ◽  
Vol 15 (06) ◽  
pp. 937-958 ◽  
Author(s):  
S. BISWAS ◽  
I. CHOWDHURY

The complex time WKB approximation is an effective tool in studying particle production in curved space–time. We use it in this work to understand the formation of classical condensate in expanding de Sitter space–time. The CWKB leads to the emergence of thermal spectrum that depends crucially on horizons (as in de Sitter space–time) or observer dependent horizons (as in Rindler space–time). A connection is sought between the horizon and the formation of classical condensate. We concentrate on de Sitter space–time and study the cosmological perturbation of k = 0 mode with various values of m/H0. We find that, for a minimally coupled free scalar field for [Formula: see text], the one-mode occupation number grows more than unity soon after the physical wavelength of the mode crosses the Hubble radius and soon after that, diverges as [Formula: see text], where [Formula: see text]. The results substantiate the previous works in this direction. We also find the correct oscillation and behavior of N(z) at small z from a single expression using CWKB approximation for various values of m/H0. We also discuss decoherence in relation to the formation of classical condensate. We further find that the squeezed state formalism and CWKB method give identical results.


2008 ◽  
Vol 22 (03) ◽  
pp. 267-280 ◽  
Author(s):  
JEONG RYEOL CHOI ◽  
JUN-YOUNG OH

In linear media with time-dependent parameters, various commutation relations for the field operators obtained from the Lewis–Riesenfeld invariant operator method are calculated. We investigated whether our development is self-consistent or not by evaluating the Heisenberg equation of motion for field operators using the associated commutation relation.


2010 ◽  
Vol 692 (4) ◽  
pp. 226-231 ◽  
Author(s):  
Eric Greenwood ◽  
De Chang Dai ◽  
Dejan Stojkovic

2005 ◽  
Vol 19 (14) ◽  
pp. 2213-2224 ◽  
Author(s):  
JEONG RYEOL CHOI ◽  
KYU HWANG YEON

We investigated exact quantum states of the light confined in cubes filled with conductive media whose parameters are explicitly dependent on time and the light propagating under periodic boundary condition by making use of the LR (Lewis–Riesenfeld) invariant operator method. The choice of Coulomb gauge in the charge free space allowed us to evaluate quantized electric and magnetic fields by expanding only the vector potential, since the scalar potential is zero. We also described the fields with a spectrum of continuous mode, which can be obtained by setting the side L to infinity.


Sign in / Sign up

Export Citation Format

Share Document