Reconstruction of ΛCDM expansion in nonlocal gravity

2017 ◽  
Vol 26 (11) ◽  
pp. 1750134 ◽  
Author(s):  
K. Y. Roobiat ◽  
R. Pazhouhesh

We developed the nonlocal model recently published by Maggiore and Mancarella by introducing a new function [Formula: see text]. This modification allows us to obtain a new analytical solution in the hyperbolic tangent form for the nonlocal distortion function. This model gives rise to an expansion history behaving exactly as [Formula: see text]CDM (Lambda Cold Dark Matter) with the same matter content, but without any need to neither cosmological constant nor dark energy. However, background evolution in our model and [Formula: see text]CDM are the same, but the results may be distinguishable in structure formation investigations or in light of new observations that probably contain additional information more than the background evolution.

Author(s):  
Gilles Cohen-Tannoudji ◽  
Jean-Pierre Gazeau

In the same way as the realization of some of the famous gedanken experiments imagined by the founding fathers of quantum mechanics has recently led to the current renewal of the interpretation of quantum physics, it seems that the most recent progresses of observational astrophysics can be interpreted as the realization of some cosmological gedanken experiments such as the removal from the universe of the whole visible matter or the cosmic time travel leading to a new cosmological standard model. This standard model involves two dark components of the universe, dark energy and dark matter. Whereas dark energy is usually associated with the positive cosmological constant, we propose to explain dark matter as a pure QCD effect. This effect is due to the trace anomaly viewed as a negative cosmological constant accompanying baryonic matter at the hadronization transition from the quark gluon plasma phase to the colorless hadronic phase. Our approach not only yields a ratio Dark/Visible equal to 11/2 but also provides gluons and (anti-)quarks with an extra mass of vibrational nature. Currently observed dark matter is thus interpreted as a gluon Bose Einstein condensate that is a relic of the quark period. Such an interpretation would comfort the idea that, apart from the violation of the matter/antimatter symmetry satisfying the Sakharov’s conditions, the reconciliation of particle physics and cosmology needs not the recourse to any ad hoc fields, particles or hidden variables.


2014 ◽  
Vol 69 (1-2) ◽  
pp. 17-20
Author(s):  
Friedwardt Winterberg

To explain the relative abundance of the dark energy and non-baryonic cold dark matter (74% and 22% respectively), making up 96% of the material content of the universe, it is proposed that space is filled with an equal amount of positive and negative mass particles, satisfying the average null energy condition, and with it the smallness of the cosmological constant. This assumption can explain the relative abundance of the dark energy and cold dark matter by the Madelung constant for the gravitationally-interacting positive and negative mass particles.


2006 ◽  
Vol 15 (01) ◽  
pp. 69-94 ◽  
Author(s):  
S. CAPOZZIELLO ◽  
V. F. CARDONE ◽  
G. LAMBIASE ◽  
A. TROISI

We investigate the possibility that part of the dark matter is not made out of the usual cold dark matter (CDM) dust-like particles, but is in the form of a fluid of strings with barotropic factor ws= -1/3 of cosmic origin. To this aim, we split the dark matter density parameter into two terms and investigate the dynamics of a spatially flat universe filled with baryons, CDM, a fluid of strings and dark energy, modeling the latter as a cosmological constant or a negative pressure fluid with a constant equation of state w < 0. To test the viability of the models and to constrain their parameters, we use the Type Ia supernovae Hubble diagram and data on the gas mass fraction in galaxy clusters. We also discuss the weak field limit of a model comprising a significant fraction of dark matter in the form of a fluid of strings and show that this mechanism makes it possible to reduce the need for the elusive and up to now undetected CDM. We finally find that a model comprising both a cosmological constant and a fluid of strings fits the data very well and eliminates the need for phantom dark energy, thus representing a viable candidate for alleviating some of the problems plaguing the dark side of the universe.


2021 ◽  
Vol 502 (2) ◽  
pp. 1785-1796
Author(s):  
R A Jackson ◽  
S Kaviraj ◽  
G Martin ◽  
J E G Devriendt ◽  
A Slyz ◽  
...  

ABSTRACT In the standard ΛCDM (Lambda cold dark matter) paradigm, dwarf galaxies are expected to be dark matter-rich, as baryonic feedback is thought to quickly drive gas out of their shallow potential wells and quench star formation at early epochs. Recent observations of local dwarfs with extremely low dark matter content appear to contradict this picture, potentially bringing the validity of the standard model into question. We use NewHorizon, a high-resolution cosmological simulation, to demonstrate that sustained stripping of dark matter, in tidal interactions between a massive galaxy and a dwarf satellite, naturally produces dwarfs that are dark matter-deficient, even though their initial dark matter fractions are normal. The process of dark matter stripping is responsible for the large scatter in the halo-to-stellar mass relation in the dwarf regime. The degree of stripping is driven by the closeness of the orbit of the dwarf around its massive companion and, in extreme cases, produces dwarfs with halo-to-stellar mass ratios as low as unity, consistent with the findings of recent observational studies. ∼30 per cent of dwarfs show some deviation from normal dark matter fractions due to dark matter stripping, with 10 per cent showing high levels of dark matter deficiency (Mhalo/M⋆ &lt; 10). Given their close orbits, a significant fraction of dark matter-deficient dwarfs merge with their massive companions (e.g. ∼70 per cent merge over time-scales of ∼3.5 Gyr), with the dark matter-deficient population being constantly replenished by new interactions between dwarfs and massive companions. The creation of these galaxies is therefore a natural by-product of galaxy evolution and their existence is not in tension with the standard paradigm.


2011 ◽  
Vol 20 (13) ◽  
pp. 2543-2558 ◽  
Author(s):  
SAMUEL LEPE ◽  
JAVIER LORCA ◽  
FRANCISCO PEÑA ◽  
YERKO VÁSQUEZ

From a variational action with nonminimal coupling with a scalar field and classical scalar and fermionic interaction, cosmological field equations can be obtained. Imposing a Friedmann–Lemaître–Robertson–Walker (FLRW) metric, the equations lead directly to a cosmological model consisting of two interacting fluids, where the scalar field fluid is interpreted as dark energy and the fermionic field fluid is interpreted as dark matter. Several cases were studied analytically and numerically. An important feature of the non-minimal coupling is that it allows crossing the barrier from a quintessence to phantom behavior. The insensitivity of the solutions to one of the parameters of the model permits it to find an almost analytical solution for the cosmological constant type of universe.


2019 ◽  
Vol 490 (2) ◽  
pp. 2071-2085 ◽  
Author(s):  
Weiqiang Yang ◽  
Supriya Pan ◽  
Andronikos Paliathanasis ◽  
Subir Ghosh ◽  
Yabo Wu

ABSTRACT Unified cosmological models have received a lot of attention in astrophysics community for explaining both the dark matter and dark energy evolution. The Chaplygin cosmologies, a well-known name in this group have been investigated matched with observations from different sources. Obviously, Chaplygin cosmologies have to obey restrictions in order to be consistent with the observational data. As a consequence, alternative unified models, differing from Chaplygin model, are of special interest. In the present work, we consider a specific example of such a unified cosmological model, that is quantified by only a single parameter μ, that can be considered as a minimal extension of the Λ-cold dark matter cosmology. We investigate its observational boundaries together with an analysis of the universe at large scale. Our study shows that at early time the model behaves like a dust, and as time evolves, it mimics a dark energy fluid depicting a clear transition from the early decelerating phase to the late cosmic accelerating phase. Finally, the model approaches the cosmological constant boundary in an asymptotic manner. We remark that for the present unified model, the estimations of H0 are slightly higher than its local estimation and thus alleviating the H0 tension.


Sign in / Sign up

Export Citation Format

Share Document