scholarly journals (Self-)Magnetized Bose–Einstein condensate stars

2019 ◽  
Vol 28 (10) ◽  
pp. 1950135 ◽  
Author(s):  
G. Quintero Angulo ◽  
A. Pérez Martínez ◽  
H. Pérez Rojas ◽  
D. Manreza Paret

We study magnetic field effects on the Equations-of-State (EoS) and the structure of Bose–Einstein Condensate (BEC) stars, i.e. a compact object composed by a gas of interacting spin-one bosons formed up by the pairing of two neutrons. To include the magnetic field in the thermodynamic description, we assume that particle–magnetic field and particle–particle interactions are independent. We consider two configurations for the magnetic field: one where it is constant and externally fixed, and another where it is produced by the bosons through self-magnetization. Stable configurations of self-magnetized and magnetized nonspherical BEC stars are studied using structure equations that describe axially symmetric objects. In general, the magnetized BEC stars are spheroidal, less massive and smaller than the nonmagnetic ones, being these effects more relevant at low densities. Nevertheless, star masses around two solar masses are obtained by increasing the strength of the boson–boson interaction. The inner magnetic field profiles of the self-magnetized BEC stars can be computed as a function of the equatorial radii. The values obtained for the core and surface magnetic fields are in agreement with those typically found in compact objects.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Huan-Bo Luo ◽  
Lu Li ◽  
Wu-Ming Liu

AbstractWe propose a new scheme for creating three-dimensional Skyrmions in a ferromagnetic spin-1 Bose-Einstein condensate by manipulating a multipole magnetic field and a pair of counter-propagating laser beams. The result shows that a three-dimensional Skyrmion with topological number Q = 2 can be created by a sextupole magnetic field and the laser beams. Meanwhile, the vortex ring and knot structure in the Skyrmion are found. The topological number can be calculated analytically in our model, which implies that the method can be extended to create Skyrmions with arbitrary topological number. As the examples, three-dimensional Skyrmions with Q = 3, 4 are also demonstrated and are distinguishable by the density distributions with a specific quantization axis. These topological objects have the potential to be realized in ferromagnetic spin-1 Bose-Einstein condensates experimentally.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Julien Garaud ◽  
Jin Dai ◽  
Antti J. Niemi

Abstract Vortices in a Bose-Einstein condensate are modelled as spontaneously symmetry breaking minimum energy solutions of the time dependent Gross-Pitaevskii equation, using the method of constrained optimization. In a non-rotating axially symmetric trap, the core of a single vortex precesses around the trap center and, at the same time, the phase of its wave function shifts at a constant rate. The precession velocity, the speed of phase shift, and the distance between the vortex core and the trap center, depend continuously on the value of the conserved angular momentum that is carried by the entire condensate. In the case of a symmetric pair of identical vortices, the precession engages an emergent gauge field in their relative coordinate, with a flux that is equal to the ratio between the precession and shift velocities.


2021 ◽  
Vol 9 ◽  
Author(s):  
Guang-Ping Chen ◽  
Pu Tu ◽  
Chang-Bing Qiao ◽  
Jin-Xia Zhu ◽  
Qi Jia ◽  
...  

We consider a harmonically trapped rotating spin-1 Bose–Einstein condensate with SU(3) spin–orbit coupling subject to a gradient magnetic field. The effects of SU(3) spin–orbit coupling, rotation, and gradient magnetic field on the ground-state structure of the system are investigated in detail. Our results show that the interplay among SU(3) spin–orbit coupling, rotation, and gradient magnetic field can result in a variety of ground states, such as a vortex ring and clover-type structure. The numerical results agree well with our variational analysis results.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Yue Jian ◽  
Xin Qiao ◽  
Jun-Cheng Liang ◽  
Zi-Fa Yu ◽  
Ai-Xia Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document