scholarly journals Exact solutions for compact stars with CFL quark matter

2020 ◽  
Vol 29 (07) ◽  
pp. 2050044 ◽  
Author(s):  
L. S. Rocha ◽  
A. Bernardo ◽  
M. G. B. De Avellar ◽  
J. E. Horvath

The search for the true ground state of the dense matter remains open since Bodmer, Terazawa and others raised the possibility of stable quark matter, boosted by Witten’s strange matter hypothesis in 1984. Within this proposal, the strange matter is assumed to be composed of [Formula: see text] quarks in addition to the usual [Formula: see text]s and [Formula: see text]s, having an energy per baryon lower than the strangeless counterpart, and even lower than that of nuclear matter. In this sense, neutron stars should actually be strange stars. Later work showed that a paired, symmetric in flavor, color-flavor locked (CFL) state would be preferred to the one without any pairing for a wide range of the parameters (gap [Formula: see text], strange quark mass [Formula: see text] and bag constant B). We use an approximate, yet very accurate, CFL equation-of-state (EoS) that generalizes the MIT bag model to obtain two families of exact solutions for the static Einstein Field Equations (EFE) constructing families of anisotropic compact relativistic objects. In this fashion, we provide exact useful solutions directly connected with microphysics.

2018 ◽  
Vol 171 ◽  
pp. 08001 ◽  
Author(s):  
Thomas Klähn ◽  
David B. Blaschke

We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650022 ◽  
Author(s):  
I. G. Contopoulos ◽  
F. P. Esposito ◽  
K. Kleidis ◽  
D. B. Papadopoulos ◽  
L. Witten

Exact solutions to the Einstein field equations may be generated from already existing ones (seed solutions), that admit at least one Killing vector. In this framework, a space of potentials is introduced. By the use of symmetries in this space, the set of potentials associated to a known solution is transformed into a new set, either by continuous transformations or by discrete transformations. In view of this method, and upon consideration of continuous transformations, we arrive at some exact, stationary axisymmetric solutions to the Einstein field equations in vacuum, that may be of geometrical or/and physical interest.


2006 ◽  
Vol 03 (03) ◽  
pp. 451-469 ◽  
Author(s):  
F. CANFORA ◽  
L. PARISI ◽  
G. VILASI

Exact solutions of Einstein field equations invariant for a non-Abelian bidimensional Lie algebra of Killing fields are described. Physical properties of these gravitational fields are studied, their wave character is checked by making use of covariant criteria and the observable effects of such waves are outlined. The possibility of detection of these waves with modern detectors, spherical resonant antennas in particular, is sketched.


2019 ◽  
Vol 34 (20) ◽  
pp. 1950157 ◽  
Author(s):  
Satyanarayana Gedela ◽  
Ravindra K. Bisht ◽  
Neeraj Pant

The objective of this work is to explore a new parametric class of exact solutions of the Einstein field equations coupled with the Karmarkar condition. Assuming a new metric potential [Formula: see text] with parameter (n), we find a parametric class of solutions which is physically well-behaved and represents compact stellar model of the neutron star in Vela X-1. A detailed study specifically shows that the model actually corresponds to the neutron star in Vela X-1 in terms of the mass and radius. In this connection, we investigate several physical properties like the variation of pressure, density, pressure–density ratio, adiabatic sound speeds, adiabatic index, energy conditions, stability, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent conformity with the already available evidences in theory. Further, we study the variation of physical properties of the neutron star in Vela X-1 with the parameter (n).


1975 ◽  
Vol 16 (4) ◽  
pp. 958-960 ◽  
Author(s):  
Jorge Melnick ◽  
Romualdo Tabensky

2019 ◽  
Vol 35 (02) ◽  
pp. 1950354 ◽  
Author(s):  
M. Farasat Shamir ◽  
Iffat Fayyaz

We discuss the existence of compact stars in the context of [Formula: see text] gravity model, where additional logarithmic corrections are assumed. Here, [Formula: see text] is the Ricci scalar and [Formula: see text], [Formula: see text] are constant values. Further, the compact stars are considered to be anisotropic in nature, due to the spherical symmetry and high density. For this purpose, we derive the Einstein field equations by considering Krori–Barua spacetime. For our proposed model, the physical acceptability is verified by employing several physical tests like the energy conditions, Herrera cracking concept and stability condition. In addition to this, we also discuss some important properties such as mass–radius relation, surface redshift and the speed of sound are analyzed. Our results are compared with observational stellar mass data, namely, 4U 1820-30, Cen X-3, EXO 1785-248 and LMC X-4. The graphical representation of obtained solutions provide strong evidences for more realistic and viable stellar model.


2011 ◽  
Vol 26 (10) ◽  
pp. 739-750 ◽  
Author(s):  
K. S. ADHAV ◽  
A. S. BANSOD ◽  
R. P. WANKHADE ◽  
H. G. AJMIRE

The exact solutions of the Einstein field equations for dark energy in Kaluza–Klein metric under the assumption on the anisotropy of the fluid are obtained by applying the law of variation of Hubble parameter which yields the constant value of deceleration parameter. The isotropy of the fluid, space and expansion are examined.


2007 ◽  
Vol 22 (10) ◽  
pp. 1935-1951 ◽  
Author(s):  
M. SHARIF ◽  
M. AZAM

In this paper, we elaborate the problem of energy–momentum in General Relativity with the help of some well-known solutions. In this connection, we use the prescriptions of Einstein, Landau–Lifshitz, Papapetrou and Möller to compute the energy–momentum densities for four exact solutions of the Einstein field equations. We take the gravitational waves, special class of Ferrari–Ibanez degenerate solution, Senovilla–Vera dust solution and Wainwright–Marshman solution. It turns out that these prescriptions do provide consistent results for special class of Ferrari–Ibanez degenerate solution and Wainwright–Marshman solution but inconsistent results for gravitational waves and Senovilla–Vera dust solution.


2014 ◽  
Vol 69 (1-2) ◽  
pp. 90-96 ◽  
Author(s):  
Namrata Jain ◽  
Shyamsunder S. Bhoga ◽  
Gowardhan S. Khadekar

In this paper, exact solutions of the Einstein field equations of the Kaluza-Klein cosmological model have been obtained in the presence of strange quark matter. We have considered the timevarying cosmological constant Λ as Λ = αH2 + βR-2, where α and β are free parameters. The solutions are obtained with the help of the equation of state for strange quark matter as per the Bag model, i.e. quark pressure p = 1/3(ρ - 4BC), where BC is Bag’s constant. We also discussed the physical implications of the solutions obtained for the model for different types of universes.


Sign in / Sign up

Export Citation Format

Share Document