Possible manifestations of transitions within the dark matter structure

Author(s):  
Vitaly Beylin ◽  
Maxim Bezuglov

In this paper, vector hyperquark extension of the Standard Model with multicomponent dark matter scenario is analyzed. Due to the splitting of dark matter candidates masses, transitions between these components accompanied with final state photons radiation are possible. For these processes, we calculate cross-sections and expected gamma-ray fluxes from regions with an increased density of dark matter. Effect of possible luminescence induced by complex structure of dark matter sector is discussed.

2010 ◽  
Vol 25 (14) ◽  
pp. 1187-1197
Author(s):  
E. O. ILTAN

We consider a scenario with an additional scalar standard model singlet ϕS, living in a single extra dimension of the RS1 background. The zero mode of this scalar which is localized in the extra dimension is a dark matter candidate and the annihilation cross section is strongly sensitive to its localization parameter. As a second scenario, we assume that the standard model Higgs field is accessible to the fifth flat extra dimension. At first we take the additional standard model singlet scalar field as accessible to the sixth extra dimension and its zero mode is a possible dark matter candidate. Second, we consider that the new standard model singlet, the dark matter candidate, lives in four dimensions. In both choices the KK modes of the standard model Higgs field play an observable role for the large values of the compactification radius R and the effective coupling λS is of the order of 10-2–10-1 (10-6) far from (near to) the resonant annihilation.


Author(s):  
A. L. DOS SANTOS ◽  
D. HADJIMICHEF

We investigate a double extension to the Standard Model (SM). A first extension introduces, via minimal coupling, a massive Z′ boson. This enlarged SM is coupled to a dark matter sector through the Stueckelberg mechanism by a A′ boson. However, the A′ boson does not interact directly with the SM fermions. In our study, we found that the A′ is a massless photon-like particle in dark sector. Constraints on the mass for Z′ and corrections to Z mass are obtained.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Jérôme Claude ◽  
Stephen Godfrey

AbstractWe explore regions of parameter space that give rise to suppressed direct detection cross sections in a simple model of scalar dark matter with a scalar portal that mixes with the standard model Higgs. We found that even this simple model allows considerable room in the parameter space that has not been excluded by direct detection limits. A number of effects leading to this result have been previously noted. Our main new result explores interference effects between different contributions to DM annihilation when the DM mass is larger than the scalar portal mass. New annihilation channels open up and the parameters of the model need to compensate to give the correct DM relic abundance, resulting in smaller direct detection cross sections. We find that even in a very simple model of DM there are still sizeable regions of parameter space that are not ruled out by experiment.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
...  

Abstract Measurements of the fiducial inclusive and differential production cross sections of the Higgs boson in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV are performed using events where the Higgs boson decays into a pair of W bosons that subsequently decay into a final state with an electron, a muon, and a pair of neutrinos. The analysis is based on data collected with the CMS detector at the LHC during 2016–2018, corresponding to an integrated luminosity of 137 fb−1. Production cross sections are measured as a function of the transverse momentum of the Higgs boson and the associated jet multiplicity. The Higgs boson signal is extracted and simultaneously unfolded to correct for selection efficiency and resolution effects using maximum-likelihood fits to the observed distributions in data. The integrated fiducial cross section is measured to be 86.5 ± 9.5 fb, consistent with the Standard Model expectation of 82.5 ± 4.2 fb. No significant deviation from the Standard Model expectations is observed in the differential measurements.


2013 ◽  
Vol 28 (08) ◽  
pp. 1330012
Author(s):  
PIERRE-HUGUES BEAUCHEMIN ◽  
REYHANEH REZVANI

Monojet events consist in event topologies with a high transverse momentum jet and a large amount of missing transverse energy. They constitute a promising final state that could lead to phenomena beyond the Standard Model. The theoretical models giving rise to such a signature include the pair production of Weakly Interacting Massive Particles, as dark matter candidates, and models of large extra dimensions. Monojet events can even be used to measure the Standard Model properties of Z boson decays, provided that the precision of the analysis is high enough. Such precision can be achieved by using data-driven determinations of the Standard Model contributions to monojet events. Exotics searches for new physics in such a final state have been performed at all high energy hadronic collider experiments since SPS. The ATLAS and CMS analyses with 7 TeV LHC data provide the latest and most useful information obtained from monojet studies. Their results are presented and discussed in this review paper.


2021 ◽  
Author(s):  
Xiaojun Bi

Abstract In order to reveal the nature of dark matter, it is crucial to detect its non-gravitational interactions with the standard model particles. The traditional dark matter searches focused on the so-called weakly interacting massive particles. However, this paradigm is strongly constrained by the null results of current experiments with high precision. Therefore there is a renewed interest of searches for heavy dark matter particles above TeV scale. The Large High Altitude Air Shower Observatory (LHAASO) with large effective area and strong background rejection power is very suitable to investigate the gamma-ray signals induced by dark matter annihilation or decay above TeV scale. In this document, we review the theoretical motivations and background of heavy dark matter. We review the prospects of searching for the gamma-ray signals resulted from dark matter in the dwarf spheroidal satellites and Galactic halo for LHAASO, and present the projected sensitivities. We also review the prospects of searching for the axion-like particles, which are a kind of well motivated light pseudo-scalars, through the LHAASO measurement of the very high energy gamma-ray spectra of astrophysical sources.


1996 ◽  
Vol 11 (36) ◽  
pp. 2809-2823
Author(s):  
F. STICHELBAUT

At the end of 1995, the LEP collider at CERN was operated at center-of-mass energies of 130 and 136 GeV and data corresponding to about 6 pb−1 were collected by each of the four LEP experiments. The cross-sections for fermion-pair production processes and the forward-backward asymmetries for charged lepton pairs were measured and compared to the standard model predictions. Events containing only energetic photons in the final state were used to look for effects arising from new physics. Direct searches for new particles predicted by various models beyond the standard model were performed. Searches for pair or singly produced excited leptons, for unstable charged and neutral heavy leptons, and for supersymmetric particles (chargino, neutralino, scalar leptons and scalar top quark) resulted in new exclusion limits. The ALEPH collaboration reported an excess of four-jet events in its data, which was not confirmed by the other LEP experiments.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Fabiola Fortuna ◽  
Pablo Roig ◽  
José Wudka

Abstract We analyze interactions between dark matter and standard model particles with spin one mediators in an effective field theory framework. In this paper, we are considering dark particles masses in the range from a few MeV to the mass of the Z boson. We use bounds from different experiments: Z invisible decay width, relic density, direct detection experiments, and indirect detection limits from the search of gamma-ray emissions and positron fluxes. We obtain solutions corresponding to operators with antisymmetric tensor mediators that fulfill all those requirements within our approach.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for dark matter is conducted in final states containing a photon and missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV. The data, collected during 2015–2018 by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 fb−1. No deviations from the predictions of the Standard Model are observed and 95% confidence-level upper limits between 2.45 fb and 0.5 fb are set on the visible cross section for contributions from physics beyond the Standard Model, in different ranges of the missing transverse momentum. The results are interpreted as 95% confidence-level limits in models where weakly interacting dark-matter candidates are pair-produced via an s-channel axial-vector or vector mediator. Dark-matter candidates with masses up to 415 (580) GeV are excluded for axial-vector (vector) mediators, while the maximum excluded mass of the mediator is 1460 (1470) GeV. In addition, the results are expressed in terms of 95% confidence-level limits on the parameters of a model with an axion-like particle produced in association with a photon, and are used to constrain the coupling gaZγ of an axion-like particle to the electroweak gauge bosons.


Sign in / Sign up

Export Citation Format

Share Document