scholarly journals External field effect in gravity

Author(s):  
Philip D. Mannheim ◽  
John W. Moffat

In both Newtonian gravity and Einstein gravity there is no force on a test particle located inside a spherical cavity cut out of a static, spherically symmetric mass distribution. Inside the cavity exterior matter is decoupled and there is no external field effect that could act on the test particle. However, for potentials other than the Newtonian potential or for geometries other than Ricci flat ones this is no longer the case, and there then is an external field effect. We explore this possibility in various alternate gravity scenarios, and suggest that such (Machian) external field effects can serve as a diagnostic for gravitational theory.

2012 ◽  
Vol 27 (24) ◽  
pp. 1230023 ◽  
Author(s):  
TREVOR B. DAVIES ◽  
CHARLES H.-T. WANG ◽  
ROBERT BINGHAM ◽  
J. TITO MENDONÇA

We present a brief review on a new dynamical mechanism for a strong field effect in scalar–tensor theory. Starting with a summary of the essential features of the theory and subsequent work by several authors, we analytically investigate the parametric excitation of a scalar gravitational field in a spherically symmetric radially pulsating neutron star.


2021 ◽  
Vol 36 (24) ◽  
pp. 2150165
Author(s):  
M. Ilyas

This work is to introduce a new kind of modified gravitational theory, named as [Formula: see text] (also [Formula: see text]) gravity, where [Formula: see text] is the Ricci scalar, [Formula: see text] is Gauss–Bonnet invariant and [Formula: see text] is the trace of the energy–momentum tensor. With the help of different models in this gravity, we investigate some physical features of different relativistic compact stars. For this purpose, we develop the effectively modified field equations, conservation equation, and the equation of motion for test particle. Then, we check the impact of additional force (massive test particle followed by a nongeodesic line of geometry) on compact objects. Furthermore, we took three notable stars named as [Formula: see text], [Formula: see text] and [Formula: see text]. The physical behavior of the energy density, anisotropic pressures, different energy conditions, stability, anisotropy, and the equilibrium scenario of these strange compact stars are analyzed through various plots. Finally, we conclude that the energy conditions hold, and the core of these stars is so dense.


2018 ◽  
Vol 27 (06) ◽  
pp. 1841012 ◽  
Author(s):  
Victor Berezin ◽  
Vyacheslav Dokuchaev ◽  
Yury Eroshenko

The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy–momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl–Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ([Formula: see text] massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl–Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.


1985 ◽  
Vol 113 ◽  
pp. 297-299
Author(s):  
Joshua Barnes

Equlibrium spherical stellar systems exhibiting instabilities on a dynamical timescale were first studied by Henon (1973), using a spherically symmetric N-body code. We have re-examined Henon's models using an improved code which includes non-radial forces to quadrupole order. In addition to the radial instability reported by Henon, two new non-radial instabilities are also observed. In one, found in models with highly circular orbits, the mass distribution exhibits quadrupole-mode oscillations. In the other, seen in models with highly radial orbits, the system spontaneously breaks spherical symmetry and settles into a tri-axial ellipsoid. These instabilities, which are driven by fluctuations of the mean field, offer some analogies to the well-known dynamical instabilities of a cold disk of stars. While our models are rather artificial, they indicate that dynamical instabilities may be more common in spherical systems than had been thought.


2001 ◽  
Vol 16 (11) ◽  
pp. 693-706 ◽  
Author(s):  
SALVATORE CAPOZZIELLO ◽  
SALVATORE DE MARTINO ◽  
SILVIO DE SIENA ◽  
FABRIZIO ILLUMINATI

We show that the characteristic sizes of astrophysical and cosmological structures, where gravity is the only overall relevant interaction assembling the system, have a phenomenological relation to the microscopic scales whose order of magnitude is essentially ruled by the Compton wavelength of the proton. This result agrees with the absence of screening mechanisms for the gravitational interaction and could be connected to the presence of Yukawa correcting terms in the Newtonian potential which introduces typical interaction lengths. Furthermore, we are able to justify, in a straightforward way, the Sanders-postulated mass of a vector boson considered in order to obtain the characteristic sizes of galaxies.


Sign in / Sign up

Export Citation Format

Share Document