scholarly journals Covariance group for null geodesic expansion calculations, and its application to the apparent horizon

Author(s):  
Stephen L. Adler

We show that the recipe for computing the expansions [Formula: see text] and [Formula: see text] of outgoing and ingoing null geodesics normal to a surface admits a covariance group with nonconstant scalar [Formula: see text], corresponding to the mapping [Formula: see text], [Formula: see text]. Under this mapping, the product [Formula: see text] is invariant, and thus the marginal surface computed from the vanishing of [Formula: see text], which is used to define the apparent horizon, is invariant. This covariance group naturally appears in comparing the expansions computed with different choices of coordinate system.

A coordinate system based on a twisting null geodesic congruence is developed. The various freedoms of choice are investigated and a short theorem regarding the choice of one coordinate surface is proved.


1994 ◽  
Vol 05 (01) ◽  
pp. 141-168 ◽  
Author(s):  
YUN-GANG YE

A holomorphic conformal structure on a complex manifold X is an everywhere non-degenerate section [Formula: see text] for some line bundle N. In this paper, we show that if X is a projective complex n-dimensional manifold with non-numerically effective Kx and admits a holomorphic conformal structure, then X ≅ ℚn. This in particular answers affirmatively a question of Kobayashi and Ochiai. They asked if the same holds assuming c1 (X) > 0. As a consequence, we also show that any projective conformal manifold with an immersed rational null geodesic is necessarily a smooth hyperquadric ℚn.


Author(s):  
Keisuke Nakashi ◽  
Shinpei Kobayashi ◽  
Shu Ueda ◽  
Hiromi Saida

Abstract We study the null geodesics in a static circularly symmetric (SCS) black hole spacetime, which is a solution in the $(2+1)$D massive gravity proposed by Bergshoeff, Hohm, and Townsend (BHT massive gravity). We obtain analytic solutions for the null geodesic equation in the SCS black hole background and find the explicit form of deflection angles. We see that, for various values of the impact parameter, the deflection angle can be positive, negative, or even zero in this black hole spacetime. The negative deflection angle indicates the repulsive behavior of the gravity that comes from the gravitational hair parameter that is the most characteristic quantity of the BHT massive gravity.


2001 ◽  
Vol 16 (37) ◽  
pp. 2371-2380 ◽  
Author(s):  
DONAM YOUM

We study null bulk geodesic motion in the brane world cosmology in the RS2 scenario and in the static universe in the bulk of the charged topological AdS black hole. We obtain equations describing the null bulk geodesic motion as observed in one lower dimension. We find that the null geodesic motion in the bulk of the brane world cosmology in the RS2 scenario is observed to be under the additional influence of extra non-gravitational force by the observer on the three-brane, if the brane universe does not possess the Z2 symmetry. As for the null geodesic motion in the static universe in the bulk of the charged AdS black hole, the extra force is realized even when the brane universe has the Z2 symmetry.


2019 ◽  
Vol 31 (07) ◽  
pp. 1950021
Author(s):  
G. Eskin

We show that an incoming null-geodesic belonging to a plane passing through the origin and starting outside the outer horizon crosses the outer and the inner horizons. Then it turns at some point inside the inner horizon and approaches the inner horizon when the time tends to infinity. We also construct a geometric optics solution of the Reissner–Nordstrom equation that has support in a neighborhood of the null-geodesic.


2009 ◽  
Vol 18 (11) ◽  
pp. 1707-1717 ◽  
Author(s):  
JIANG KE-XIA ◽  
KE SAN-MIN ◽  
PENG DAN-TAO

An analysis is made for relations between the tunneling rate and the unified first law of thermodynamics at the trapping horizons of two kinds of spherically symmetric dynamical black holes. The first kind is the Vaidya–Bardeen black hole; the tunneling rate Γ ~ e△S can be obtained naturally from the unified first law at the apparent horizon, which holds the form dEH = TdS + WdV. The second kind is the McVittie solution; the action of the radial null geodesic of the outgoing particles does not always have a pole at the apparent horizon, while the ingoing mode always has one. The solution of the ingoing mode of the radiation can be mathematically reduced to the case in the FRW universe smoothly. However, as a black hole, the physical meaning is unclear and even puzzling.


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


Sign in / Sign up

Export Citation Format

Share Document