scholarly journals HAWKING RADIATION AS TUNNELING AND THE UNIFIED FIRST LAW OF THERMODYNAMICS FOR A CLASS OF DYNAMICAL BLACK HOLES

2009 ◽  
Vol 18 (11) ◽  
pp. 1707-1717 ◽  
Author(s):  
JIANG KE-XIA ◽  
KE SAN-MIN ◽  
PENG DAN-TAO

An analysis is made for relations between the tunneling rate and the unified first law of thermodynamics at the trapping horizons of two kinds of spherically symmetric dynamical black holes. The first kind is the Vaidya–Bardeen black hole; the tunneling rate Γ ~ e△S can be obtained naturally from the unified first law at the apparent horizon, which holds the form dEH = TdS + WdV. The second kind is the McVittie solution; the action of the radial null geodesic of the outgoing particles does not always have a pole at the apparent horizon, while the ingoing mode always has one. The solution of the ingoing mode of the radiation can be mathematically reduced to the case in the FRW universe smoothly. However, as a black hole, the physical meaning is unclear and even puzzling.

Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 148
Author(s):  
Jianhui Qiu ◽  
Changjun Gao

We construct higher-dimensional and exact black holes in Einstein-Maxwell-scalar theory. The strategy we adopted is to extend the known, static and spherically symmetric black holes in the Einstein-Maxwell dilaton gravity and Einstein-Maxwell-scalar theory. Then we investigate the black hole thermodynamics. Concretely, the generalized Smarr formula and the first law of thermodynamics are derived.


2009 ◽  
Vol 24 (28n29) ◽  
pp. 5261-5285 ◽  
Author(s):  
ALEX B. NIELSEN ◽  
DONG-HAN YEOM

We discuss some of the issues relating to information loss and black hole thermodynamics in the light of recent work on local black hole horizons. Understood in terms of pure states evolving into mixed states, the possibility of information loss in black holes is closely related to the global causal structure of space–time, as is the existence of event horizons. However, black holes need not be defined by event horizons, and in fact we argue that in order to have a fully unitary evolution for black holes, they should be defined in terms of something else, such as a trapping horizon. The Misner–Sharp mass in spherical symmetry shows very simply how trapping horizons can give rise to black hole thermodynamics, Hawking radiation and singularities. We show how the Misner–Sharp mass can also be used to give insights into the process of collapse and evaporation of locally defined black holes.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
P. Bargueño ◽  
J. A. Miralles ◽  
J. A. Pons

AbstractIn this work we extend the first law of thermodynamics to spherically symmetric black hole solutions in the context of scale-dependent gravity. After deriving generalized expressions for both the entropy and energy due to the spatial variation of the gravitational constant we analize, by pointing out some relations between scale-dependent and f(R) theories, whether or not the former can be described using equilibrium thermodynamics.


2020 ◽  
Vol 98 (9) ◽  
pp. 853-856
Author(s):  
H. Moradpour ◽  
M. Valipour

Employing the unified first law of thermodynamics and the field equations of the generalized Rastall theory, we get the generalized Misner–Sharp mass of space–times for which gtt = –grr = –f(r). The obtained result differs from those of the Einstein and Rastall theories. Moreover, using the first law of thermodynamics, the obtained generalized Misner–Sharp mass, and the field equations, the entropy of static spherically symmetric horizons are also addressed in the framework of the generalized Rastall theory. In addition, by generalizing the study to a flat Friedmann–Robertson–Walker (FRW) universe, the apparent horizon entropy is also calculated. Considering the effects of applying the Newtonian limit to the field equations on the coupling coefficients of the generalized Rastall theory, our study indicates (i) the obtained entropy–area relation is the same as that of the Rastall theory, and (ii) the Bekenstein entropy is recovered when the generalized Rastall theory reduces to the Einstein theory. The validity of the second law of thermodynamics is also investigated in the flat FRW universe.


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


Author(s):  
Charles D. Bailyn

This chapter explores the ways that accretion onto a black hole produces energy and radiation. As material falls into a gravitational potential well, energy is transformed from gravitational potential energy into other forms of energy, so that total energy is conserved. Observing such accretion energy is one of the primary ways that astrophysicists pinpoint the locations of potential black holes. The spectrum and intensity of this radiation is governed by the geometry of the gas flow, the mass infall rate, and the mass of the accretor. The simplest flow geometry is that of a stationary object accreting mass equally from all directions. Such spherically symmetric accretion is referred to as Bondi-Hoyle accretion. However, accretion flows onto black holes are not thought to be spherically symmetric—the infall is much more frequently in the form of a flattened disk.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050025 ◽  
Author(s):  
Mykola M. Stetsko

Scalar–tensor theory of gravity with nonlinear electromagnetic field, minimally coupled to gravity is considered and static black hole solutions are obtained. Namely, power-law and Born–Infeld nonlinear Lagrangians for the electromagnetic field are examined. Since the cosmological constant is taken into account, it allowed us to investigate the so-called topological black holes. Black hole thermodynamics is studied, in particular temperature of the black holes is calculated and examined and the first law of thermodynamics is obtained with help of Wald’s approach.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050163 ◽  
Author(s):  
Ali Övgün ◽  
İzzet Sakallı ◽  
Joel Saavedra ◽  
Carlos Leiva

We study the shadow and energy emission rate of a spherically symmetric noncommutative black hole in Rastall gravity. Depending on the model parameters, the noncommutative black hole can reduce to the Schwarzschild black hole. Since the nonvanishing noncommutative parameter affects the formation of event horizon, the visibility of the resulting shadow depends on the noncommutative parameter in Rastall gravity. The obtained sectional shadows respect the unstable circular orbit condition, which is crucial for physical validity of the black hole image model.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Benrong Mu ◽  
Peng Wang ◽  
Haitang Yang

We investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole’s mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.


Author(s):  
Suddhasattwa Brahma ◽  
Dong-han Yeom

Abstract We investigate a regular black hole model with a de Sitter-like core at its center. This type of a black hole model with a false vacuum core was introduced with the hope of singularity-resolution and is a common feature shared by many regular black holes. In this paper, we examine this claim of a singularity-free black hole by employing the thin-shell formalism, and exploring its dynamics, within the Vaidya approximation. We find that during gravitational collapse, the shell necessarily moves along a space-like direction. More interestingly, during the evaporation phase, the shell and the outer apparent horizon approach each other but, unless the evaporation takes place very rapidly, the approaching tendency is too slow to avoid singularity-formation. This shows that albeit a false vacuum core may remove the singularity along the ingoing null direction, there still exists a singularity along the outgoing null direction, unless the evaporation is very strong.


Sign in / Sign up

Export Citation Format

Share Document