GLUONIC SCREENING MASSES FOR SU(2) GAUGE THEORY

2007 ◽  
Vol 16 (09) ◽  
pp. 2939-2942 ◽  
Author(s):  
R. SOUSA ◽  
M. CHIAPPARINI ◽  
T. MENDES ◽  
A. CUCCHIERI

We study the spectrum of gluon screening masses in lattice Yang–Mills theory as a function of the lattice size, for the gauge group SU(2) and near the deconfinement temperature. We obtain values for the mass ratios consistent with predictions from universality arguments.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
B. Le Floch

Abstract Exact field theory dualities can be implemented by duality domain walls such that passing any operator through the interface maps it to the dual operator. This paper describes the S-duality wall of four-dimensional $$ \mathcal{N} $$ N = 2 SU(N) SQCD with 2N hypermultiplets in terms of fields on the defect, namely three-dimensional $$ \mathcal{N} $$ N = 2 SQCD with gauge group U(N − 1) and 2N flavours, with a monopole superpotential. The theory is self-dual under a duality found by Benini, Benvenuti and Pasquetti, in the same way that T[SU(N)] (the S-duality wall of $$ \mathcal{N} $$ N = 4 super Yang-Mills) is self-mirror. The domain-wall theory can also be realized as a limit of a USp(2N − 2) gauge theory; it reduces to known results for N = 2. The theory is found through the AGT correspondence by determining the braiding kernel of two semi-degenerate vertex operators in Toda CFT.


2003 ◽  
Vol 18 (40) ◽  
pp. 2873-2886 ◽  
Author(s):  
VLADIMIR DZHUNUSHALIEV ◽  
DOUGLAS SINGLETON

The well-known topological monopoles originally investigated by 't Hooft and Polyakov are known to arise in classical Yang–Mills–Higgs theory. With a pure gauge theory, it is known that the classical Yang–Mills field equation do not have such finite energy configurations. Here we argue that such configurations may arise in a semi-quantized Yang–Mills theory, where the original gauge group, SU(3), is reduced to a smaller gauge group, SU(2), and with some combination of the coset fields of the SU(3) to SU(2) reduction acting as effective scalar fields. The procedure is called semi-quantized since some of the original gauge fields are treated as quantum degrees of freedom, while others are postulated to be effectively described as classical degrees of freedom. Some speculation is offer on a possible connection between these monopole configurations and the confinement problem, and the nucleon spin puzzle.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Philipp Rüter ◽  
Richard J. Szabo

Abstract We study the BPS spectrum of four-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric Yang-Mills theory with gauge group SU(2) and a massive adjoint hypermultiplet, which has an extremely intricate structure with infinite spectrum in all chambers of its Coulomb moduli space, and is not well understood. We build on previous results by employing the BPS quiver description of the spectrum, and explore the qualitative features in detail using numerical techniques. We find novel and unexpected behaviour in the form of wall-crossings involving interactions between BPS particles with negative electric-magnetic pairings, which we interpret in terms of the reverse orderings of the usual wall-crossing formulas for rank one $$ \mathcal{N} $$ N = 2 field theories. This identifies new a priori unrelated states in the spectrum.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Georgios Korpas ◽  
Jan Manschot ◽  
Gregory W. Moore ◽  
Iurii Nidaiev

AbstractThe u-plane integral is the contribution of the Coulomb branch to correlation functions of $${\mathcal {N}}=2$$ N = 2 gauge theory on a compact four-manifold. We consider the u-plane integral for correlators of point and surface observables of topologically twisted theories with gauge group $$\mathrm{SU}(2)$$ SU ( 2 ) , for an arbitrary four-manifold with $$(b_1,b_2^+)=(0,1)$$ ( b 1 , b 2 + ) = ( 0 , 1 ) . The u-plane contribution equals the full correlator in the absence of Seiberg–Witten contributions at strong coupling, and coincides with the mathematically defined Donaldson invariants in such cases. We demonstrate that the u-plane correlators are efficiently determined using mock modular forms for point observables, and Appell–Lerch sums for surface observables. We use these results to discuss the asymptotic behavior of correlators as function of the number of observables. Our findings suggest that the vev of exponentiated point and surface observables is an entire function of the fugacities.


1979 ◽  
Vol 19 (12) ◽  
pp. 3649-3652 ◽  
Author(s):  
Eve Kovacs ◽  
Shui-Yin Lo

2009 ◽  
Vol 24 (27) ◽  
pp. 5051-5120
Author(s):  
CHANGHYUN AHN

Starting from an [Formula: see text] supersymmetric electric gauge theory with the multiple product gauge group and the bifundamentals, we apply Seiberg dual to each gauge group, obtain the [Formula: see text] supersymmetric dual magnetic gauge theories with dual matters including the gauge singlets. Then we describe the intersecting brane configurations, where there are NS-branes and D4-branes (and anti-D4-branes), of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of this gauge theory. We also discuss the case where the orientifold 4-planes are added into the above brane configuration. Next, by adding an orientifold 6-plane, we apply to an [Formula: see text] supersymmetric electric gauge theory with the multiple product gauge group (where a single symplectic or orthogonal gauge group is present) and the bifundamentals. Finally, we describe the other cases where the orientifold 6-plane intersects with NS-brane.


1994 ◽  
Vol 49 (12) ◽  
pp. 6849-6856 ◽  
Author(s):  
Suzhou Huang ◽  
A. R. Levi
Keyword(s):  

2010 ◽  
Vol 25 (31) ◽  
pp. 5765-5785 ◽  
Author(s):  
GEORGE SAVVIDY

In the recently proposed generalization of the Yang–Mills theory, the group of gauge transformation gets essentially enlarged. This enlargement involves a mixture of the internal and space–time symmetries. The resulting group is an extension of the Poincaré group with infinitely many generators which carry internal and space–time indices. The matrix representations of the extended Poincaré generators are expressible in terms of Pauli–Lubanski vector in one case and in terms of its invariant derivative in another. In the later case the generators of the gauge group are transversal to the momentum and are projecting the non-Abelian tensor gauge fields into the transversal plane, keeping only their positively definite spacelike components.


2007 ◽  
Vol 04 (08) ◽  
pp. 1239-1257 ◽  
Author(s):  
CARLOS CASTRO

A novel Chern–Simons E8 gauge theory of gravity in D = 15 based on an octicE8 invariant expression in D = 16 (recently constructed by Cederwall and Palmkvist) is developed. A grand unification model of gravity with the other forces is very plausible within the framework of a supersymmetric extension (to incorporate spacetime fermions) of this Chern–Simons E8 gauge theory. We review the construction showing why the ordinary 11D Chern–Simons gravity theory (based on the Anti de Sitter group) can be embedded into a Clifford-algebra valued gauge theory and that an E8 Yang–Mills field theory is a small sector of a Clifford (16) algebra gauge theory. An E8 gauge bundle formulation was instrumental in understanding the topological part of the 11-dim M-theory partition function. The nature of this 11-dim E8 gauge theory remains unknown. We hope that the Chern–Simons E8 gauge theory of gravity in D = 15 advanced in this work may shed some light into solving this problem after a dimensional reduction.


2020 ◽  
Vol 2020 (2) ◽  
Author(s):  
Yasuhiro Sekino

Abstract Gauge/gravity correspondence is regarded as a powerful tool for the study of strongly coupled quantum systems, but its proof is not available. An unresolved issue that should be closely related to the proof is what kind of correspondence exists, if any, when gauge theory is weakly coupled. We report progress about this limit for the case associated with D$p$-branes ($0\le p\le 4$), namely, the duality between the $(p+1)$D maximally supersymmetric Yang–Mills theory and superstring theory on the near-horizon limit of the D$p$-brane solution. It has been suggested by supergravity analysis that the two-point functions of certain operators in gauge theory obey a power law with the power different from the free-field value for $p\neq 3$. In this work, we show for the first time that the free-field result can be reproduced by superstring theory on the strongly curved background. The operator that we consider is of the form ${\rm Tr}(Z^J)$, where $Z$ is a complex combination of two scalar fields. We assume that the corresponding string has the worldsheet spatial direction discretized into $J$ bits, and use the fact that these bits become non-interacting when ’t Hooft coupling is zero.


Sign in / Sign up

Export Citation Format

Share Document