scholarly journals THE PION MODEL

2011 ◽  
Vol 20 (06) ◽  
pp. 1527-1532
Author(s):  
B. G. SIDHARTH

We revisit the problem of a mechanism that generates the mass spectrum of elementary particles. This has vexed physicists for several decades now. In this connection, we deduce a formula that gives the masses of all known elementary particles, even though other quantum numbers are suppressed. These considerations become important in view of the Large Hadron Collider which is expected to attain 14 TeV by 2013.

2018 ◽  
Vol 33 (06) ◽  
pp. 1850034
Author(s):  
Hui Li ◽  
Jian-Bin Chen ◽  
Li-Li Xing

To explain the matter–antimatter asymmetry, a supersymmetric extension of the Standard Model (SM) is proposed where baryon and lepton numbers are local-gauged (BLMSSM), and exotic superfields are introduced when gauge group is enlarged to [Formula: see text]. Owing to the consistency of the SM prediction and the observation of large hadron collider (LHC), the parameter space that related to the masses of new particles is stringently constrained. By diagonalizing the mass-squared matrices for neutral scalar sectors and the mass-squared matrices for exotic quarks, we obtain the mass of these particles, then present the contour plot of mass varying from different parameters with some assumptions, so the constraints on model parameter can be obtained with different lower limits of particle mass.


2008 ◽  
Vol 23 (35) ◽  
pp. 2987-2996 ◽  
Author(s):  
ARUNAVA ROY ◽  
MARCO CAVAGLIÀ

Supersymmetry and extra dimensions are the two most promising candidates for new physics at the TeV scale. Supersymmetric particles or extra-dimensional effects could soon be observed at the Large Hadron Collider. We propose a simple but effective method to discriminate the two models: the analysis of isolated leptons with high transverse momentum. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET, the latter providing the mass spectrum. Our results show that the measure of the dilepton invariant mass provides a promising signature to differentiate supersymmetry and black hole events at the Large Hadron Collider. Analysis of event-shape variables and multilepton events complement and strengthen this conclusion.


2014 ◽  
Vol 29 (04) ◽  
pp. 1430004 ◽  
Author(s):  
Dezső Horváth

The 40 years old Standard Model, the theory of particle physics, seems to describe all experimental data very well. All of its elementary particles were identified and studied apart from the Higgs boson until 2012. For decades, many experiments were built and operated searching for it, and finally, the two main experiments of the Large Hadron Collider (LHC) at CERN, CMS and ATLAS, in 2012 observed a new particle with properties close to those predicted for the Higgs boson. In this paper, we outline the search story: the exclusion of the Higgs boson at the Large Electron Positron (LEP) collider, and its observation at LHC.


2015 ◽  
Vol 23 (1) ◽  
pp. 57-70
Author(s):  
Aleandro Nisati

The Large Hadron Collider (LHC) at CERN is the highest energy machine for particle physics research ever built. In the years 2010–2012 this accelerator has collided protons to a centre-mass-energy up to 8 TeV (note that 1 TeV corresponds to the energy of about 1000 protons at rest; the mass of one proton is about 1.67×10–24 g). The events delivered by the LHC have been collected and analysed by four apparatuses placed alongside this machine. The search for the Higgs boson predicted by the Standard Model and the search for new particles and fields beyond this theory represent the most important points of the scientific programme of the LHC. In July 2012, the international collaborations ATLAS and CMS, consisting of more than 3000 physicists, announced the discovery of a new neutral particle with a mass of about 125 GeV, whose physics properties are compatible, within present experimental and theoretical uncertainties, to the Higgs boson predicted by the Standard Model. This discovery represents a major milestone for particle physics, since it indicates that the hypothesized Higgs mechanism seems to be responsible for the masses of elementary particles, in particular W± and Z0 bosons, as well as fermions (leptons and quarks). The 2013 Physics Nobel Prize has been assigned to F. Englert and P. Higgs, ‘for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider’.


2014 ◽  
Vol 29 (27) ◽  
pp. 1430062 ◽  
Author(s):  
Sau Lan Wu

In 1964, a new particle was proposed by several groups to answer the question of where the masses of elementary particles come from; this particle is usually referred to as the Higgs particle or the Higgs boson. In July 2012, this Higgs particle was finally found experimentally, a feat accomplished by the ATLAS Collaboration and the CMS Collaboration using the Large Hadron Collider at CERN. It is the purpose of this review to give my personal perspective on a brief history of the experimental search for this particle since the '80s and finally its discovery in 2012. Besides the early searches, those at the LEP collider at CERN, the Tevatron Collider at Fermilab, and the Large Hadron Collider at CERN are described in some detail. This experimental discovery of the Higgs boson is often considered to be one of the most important advances in particle physics in the last half a century, and some of the possible implications are briefly discussed. This review is based on a talk presented by the author at the conference "OCPA8 International Conference on Physics Education and Frontier Physics," the 8th Joint Meeting of Chinese Physicists Worldwide, Nanyang Technological University, Singapore, June 23–27, 2014.


2011 ◽  
Vol 26 (30n31) ◽  
pp. 5005-5055 ◽  
Author(s):  
ROBERT M. HARRIS ◽  
KONSTANTINOS KOUSOURIS

We review the experimental searches for new particles in the dijet mass spectrum conducted at the CERN [Formula: see text], the Fermilab Tevatron Collider, and the CERN Large Hadron Collider. The theory of the QCD background and new particle signals is reviewed, with emphasis on the choices made by the experiments to model the background and signal. The experimental techniques, data, and results of dijet resonance searches at hadron colliders over the last quarter century are described and compared. Model independent and model specific limits on new particles decaying to dijets are reviewed, and a detailed comparison is made of the recently published limits from the ATLAS and CMS experiments.


2012 ◽  
Vol 108 (11) ◽  
Author(s):  
S. Chatrchyan ◽  
V. Khachatryan ◽  
A. M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
...  

2014 ◽  
Vol 29 (09) ◽  
pp. 1330027 ◽  
Author(s):  
Sau Lan Wu

In 1964, a new particle was proposed by several groups to answer the question of where the masses of elementary particles come from; this particle is usually referred to as the Higgs particle or the Higgs boson. In July 2012, this Higgs particle was finally found experimentally, a feat accomplished by the ATLAS Collaboration and the CMS Collaboration using the Large Hadron Collider at CERN. It is the purpose of this review to give my personal perspective on a brief history of the experimental search for this particle since the '80s and finally its discovery in 2012. Besides the early searches, those at the LEP collider at CERN, the Tevatron Collider at Fermilab, and the Large Hadron Collider at CERN are described in some detail. This experimental discovery of the Higgs boson is often considered to be the most important advance in particle physics in the last half a century, and some of the possible implications are briefly discussed. This review is partially based on a talk presented by the author at the conference "Higgs Quo Vadis," Aspen Center for Physics, Aspen, CO, USA, March 10–15, 2013.


2018 ◽  
Vol 64 (4) ◽  
pp. 603-615
Author(s):  
A E Allakhverdieva ◽  
M V Dolgopolov ◽  
E N Rykova

Higgs boson with mass mh = 126 GeV was discovered at Large Hadron Collider in 2012. Its mass corresponds both to Standard Model of elementary-particles physics and to the mass of the most lightweight Higgs boson in the minimal supersymmetric Standard Model. In this paper, we consider the MSSM model not preserving CP-invariance that contain a large number of parameters to be variated. Using the experimental value of the Higgs boson mass, we obtain the restrictions on the parameters of the model, describe phenomenological scenarios, and analyze possible areas of the space of parameters.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ulrich Haisch ◽  
Giacomo Polesello

Abstract Given the hints of lepton-flavour non-universality in B-meson decays, leptoquarks (LQs) are enjoying a renaissance. We propose novel Large Hadron Collider (LHC) searches for such hypothetical states that do not rely on strong production only, but can also receive important contributions from quark-lepton annihilation. For the cases of a resonant signal involving a bottom quark and a tau lepton (b + τ), a top quark and missing transverse energy ($$ {E}_T^{\mathrm{miss}} $$ E T miss ) and light-flavour jets plus $$ {E}_T^{\mathrm{miss}} $$ E T miss , we develop realistic analysis strategies and provide detailed evaluations of the achievable sensitivities for the corresponding LQ signatures at future LHC runs. Our analyses allow us to derive a series of stringent constraints on the masses and couplings of third-generation singlet vector LQs, showing that at LHC Run III and the high-luminosity LHC the proposed search channels can probe interesting parts of the LQ parameter space addressing the B-physics anomalies. In view of the reach of the proposed b + τ signature, we recommend that dedicated resonance searches for this final state should be added to the exotics search canon of both ATLAS and CMS.


Sign in / Sign up

Export Citation Format

Share Document