Search for exotic features in the ground state light nuclei with 10 ≤Z ≤ 18 from stable valley to drip lines

2019 ◽  
Vol 28 (11) ◽  
pp. 1950101
Author(s):  
G. Saxena ◽  
M. Kumawat ◽  
Mamta Aggarwal

We present a systematic description of the exotic features in the ground states of light nuclei from the stable valley to the drip lines. A study with the even and odd isotopes of Ne, Mg, Si, S and Ar has been performed using theoretical formalisms (i) Relativistic mean-field plus state-dependent BCS approach and (ii) Macroscopic–Microscopic (MM) approach using the triaxially deformed Nilsson–Strutinsky Method. The computed binding energies and one- and two-neutron separation energies using both the theories show magic character of [Formula: see text] and 40. The neutron and proton radii and the neutron densities show a well-developed neutron skin in the neutron-rich isotopes. The exotic phenomena such as weakly bound structures and the central density depletion characterized as bubble effect are explored. Our calculations for the single particle levels, density profiles and the charge form factors indicate bubble-like structures. Few new candidates of bubble nuclei are identified. Most of the nuclei in this region are found deformed with mostly prolate shape and few triaxial shapes while many nuclei exhibit the phenomenon of shape coexistence. Our results display a reasonable agreement between both the theories and the available experimental data.

2011 ◽  
Vol 20 (11) ◽  
pp. 2293-2303 ◽  
Author(s):  
PROVASH MALI

The ground state properties namely the binding energy, the root mean square (rms) radius (neutron, proton and charge) and the deformation parameter of 45 newly identified neutron-rich isotopes in the A~71–152 mass region have been predicted in the relativistic mean filed (RMF) framework along with the Bardeen–Cooper–Schrieffer (BCS) type of pairing. Validity of the RMF results with the NL3 effective force are tested for odd-A Zn and Rh isotopic chains without taking the time reversal symmetry breaking effects into consideration. The RMF prediction on the binding energies are in good agreement with the empirical/finite-range droplet model calculation. The shell effects on the rms radii of odd-A Zn and Rh isotopes are nicely reproduced. The possibility of shape-coexistence in the newly identified nuclei is discussed.


2017 ◽  
Vol 32 (22) ◽  
pp. 1750117 ◽  
Author(s):  
Ozan Artun

In this paper, we intend to extend the nuclear data of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] nuclei used in nuclear battery technology, because, these nuclei are quite important for space investigations in radioisotope thermoelectric generator (RTG) and for microelectronic technologies in betavoltaic batteries. Therefore, the nuclear structure properties of nuclei such as separation energies, neutron skin thicknesses, proton, charge and neutron density distributions as a function of radius, the root mean square (rms) proton, charge and neutron radii, binding energies per particle, have been investigated by Hartree–Fock with eight different Skyrme forces. The obtained results have been compared with the experimental data in literature and relativistic mean field theory (RMFT) results.


2007 ◽  
Vol 22 (02n03) ◽  
pp. 633-636 ◽  
Author(s):  
JIŘI MAREŠ ◽  
ELIAHU FRIEDMAN ◽  
AVRAHAM GAL

Dynamical effects for [Formula: see text] deeply bound nuclear states are explored within a relativistic mean field (RMF) model. Varying the strength of [Formula: see text] - nucleus interaction, we cover a wide range of binding energies in order to evaluate the corresponding widths. A lower limit [Formula: see text] is placed on the width expected for binding energy in the range of [Formula: see text]. Substantial polarization of the core nucleus is found in light nuclei. We discuss the results of the FINUDA experiment at DAΦNE which presented evidence for deeply bound K- pp states in Li and 12 C .


2008 ◽  
Vol 23 (27n30) ◽  
pp. 2589-2592 ◽  
Author(s):  
G. SAXENA ◽  
D. SINGH ◽  
H. L. YADAV ◽  
A. HAGA ◽  
H. TOKI

Inspired by recent measurements indicating proton magic number at Z =14 in the vicinity of 42 Si , we have employed our relativistic mean-field (RMF) plus state dependent BCS approach for the study of even-even nuclei to obtain magic numbers and to look for nuclei exhibiting weakly bound structures and even halo formation. In our RMF+BCS approach the single particle continuum corresponding to the RMF is replaced by a set of discrete positive energy states for the calculations of pairing energy. It is found that in several nuclei the filling in of low lying single particle resonant state with large angular momentum, even before it becomes a bound state, helps to accommodate more neutrons but with extremely small increase in the binding energy. This gives rise to the occurrence of weakly bound system of neutron rich nuclei.


1993 ◽  
Vol 02 (02) ◽  
pp. 471-477 ◽  
Author(s):  
S.K. PATRA

Bulk properties such as the binding energies and rms radii are calculated for some light (Z=1−8) nuclei using deformed relativistic mean-field model. Severe discrepancy between the calculated and experimental results are pointed out for the very light nuclei. We discuss possible causes of discrepancy for very light nuclei.


2019 ◽  
Vol 17 (42) ◽  
pp. 1-12
Author(s):  
Ali Ahmed Abdulhasan

     The nuclear ground-state structure of some Nickel (58-66Ni) isotopes has been investigated within the framework of the mean field approach using the self-consist Hartree-Fock calculations (HF) including the effective interactions of Skyrme. The Skyrme parameterizations SKM, SKM*, SI, SIII, SKO, SKE, SLY4, SKxs15, SKxs20 and SKxs25 have been utilized with HF method to study the nuclear ground state charge, mass, neutron and proton densities with the corresponding root mean square radii, charge form factors, binding energies and neutron skin thickness. The deduced results led to specifying one set or more of Skyrme parameterizations that used to achieve the best agreement with the available experimental data.


2002 ◽  
Vol 11 (01) ◽  
pp. 55-65 ◽  
Author(s):  
CHUN-YUAN GAO ◽  
QI-REN ZHANG

The binding energies per-nucleon for 1654 nuclei, whose mass numbers range from 16 to 263 and charge numbers range from 8 to 106, are calculated by the relativistic mean field theory, with finite nucleon size effect being taken into account. The calculated energy surface goes through the middle of experimental points, and the root mean square deviation for the binding energies per-nucleon is 0.08163 MeV. The numerical results may be well simulated by a droplet model type mass formula. The droplet model is therefore put on the relativistic mean field theoretical foundations.


2008 ◽  
Vol 17 (09) ◽  
pp. 1729-1738
Author(s):  
YU-JIE LIANG ◽  
ZU-HUA LIU ◽  
HONG-YU ZHOU

The halo structures in some light nuclei are investigated systemically with the nuclear asymptotic normalization coefficient (ANC) method and the relativistic mean-field (RMF) theory. Some important results about the halo structures in mirror nuclei are obtained, and some qualitative analyses are made to explore the role of Coulomb effects on the formation of proton halo nuclei.


Sign in / Sign up

Export Citation Format

Share Document