TRIBOLOGICAL PROPERTIES OF SURFACE LAYER WITH BORON IN FRICTION PAIRS

2009 ◽  
Vol 16 (05) ◽  
pp. 767-773 ◽  
Author(s):  
JANUSZ LUBAS

The aim of the present work is to determine the influence of technologically produced boron surface layers on the friction parameters in the sliding pairs under the conditions of mixed friction. The tribological evaluation included ion nitrided, pack borided, laser borided, quenched and tempered surface layers and TiB2 coating deposited on 38CrAlMo5-10 , 46Cr2 and 30MnB4 steels. Modified surface layers of annular samples were matched under test conditions with counter-sample made from AlSn20 bearing alloy. Tested sliding pairs were lubricated with 15 W/40 Lotos mineral engine oil. The tribological tests were conducted on a T-05 block on ring tester. The applied steel surface layer modification with boron allows surface layers to be created with pre-determined tribological characteristics required for the elements of kinematic pairs operating in the conditions of sliding friction. Pack boronizing reduces the friction coefficient during the start-up of the frictional pair and the maximum start-up resistance level is similar to the levels of pairs with nitrided surface layers.

Tribologia ◽  
2017 ◽  
Vol 272 (2) ◽  
pp. 107-112
Author(s):  
Janusz LUBAS ◽  
Wojciech SZCZYPIŃSKI-SALA

The aim of the present work is to determine the influence of surface layers with boron and engine oil on the processes of friction and wear in friction pairs. The ring samples with a borided surface layer cooperated under test conditions with counterparts made with CuPb30 bearing alloy. During the tests, the friction pairs were lubricated with 15W/40 Lotos mineral oil and 5W/40 Lotos synthetic oil. The friction pairs lubricated by Lotos synthetic oil a generate stronger friction force and higher temperature in the contact area of friction pairs, as compared to the pairs lubricated by Lotos mineral oil. Lubrication of the friction pairs by mineral oil in the start-up phase causes faster stabilization of the friction conditions than in the case of lubrication by synthetic oil. The wear of bearing alloy was lower when lubricated by Lotos mineral oil than by Lotos synthetic oil. The process of friction in the contact area of the friction pair leads to the destruction of the lubricant and the reduction of its operational properties, especially at high temperatures.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5810
Author(s):  
Janusz Lubas ◽  
Wojciech Szczypiński-Sala ◽  
Paweł Woś ◽  
Edyta Zielińska ◽  
Krzysztof Miernik

The present study discusses the influence of engine oils on the tribological parameters of sliding couples with laser borided surface layer. The borided layer was formed on specimens made from AISI 5045 steel by laser remelting of a surface layer coated with amorphous boron. The sliding friction and wear process was carried out on the pairs with AISI 5045 steel and SAE-48 bearing alloys which were lubricated with 5W-40 and 15W-40 engine oils. The investigation showed significant differences in the friction coefficient and temperature in the tested pairs with the laser borided surface layer. In the couples lubricated with 5W-40 engine oil, the tested parameter of friction was higher than in the couples lubricated with 15W-40 engine oil. The couples lubricated with 5W-40 engine oil showed more intensive wear of SAE-48 bearing alloy in contact with the laser borided surface layer than the pairs lubricated with 15W-40 engine oil. The laser borided surface layer used in friction pairs leads to the destruction of the lubricating properties of engine oils and reduces its resistance to scuffing.


2012 ◽  
Vol 19 (04) ◽  
pp. 1250042 ◽  
Author(s):  
JANUSZ LUBAS

The paper presents research results of the influence of CrN coating on the friction parameters in friction pairs under lubricated friction conditions. The formed CrN homogeneous coating and CrN -steel 46Cr2 "ring" structure coating was matched under test conditions with a counterpart made from SAE-48 and SAE-783 bearing alloys. Tested sliding pairs were lubricated with 5W/40 Lotos synthetic engine oil. The tribological test was conducted on block-on-ring tester. The applied modification technologies of the surface layer of steel allowed for obtaining construction materials with pre-determined tribological characteristics required for the elements of friction pairs in lubricated contact. The results of the tests proved the possibility of implementing CrN coating in friction pairs, which work under mixed friction conditions. The results showed differences in the wear of bearing alloy, as the effect of the interaction between the co-operating surface layers and of the physiochemical changes of their surfaces, induced by external forces. The smallest wear of the bearing alloy occurs during the cooperation with the nitrided layer, whereas the largest wear occurs during the cooperation with the homogenous CrN coating. The CrN coating-46Cr2 steel "ring structure" decreases friction resistance during the start-up of the sliding pair, as well as lowers the level of the friction force and temperature in the friction area during co-operation with SAE-783 bearing alloys.


Author(s):  
L. I. Kuksenova ◽  
M. S. Alekseeva ◽  
M. A. Gress ◽  
D. A. Kozlov

Nitrogenization is one of most spread methods of surface hardening of critical parts of machines. To elaborate methodological base of structural evaluation of quality parameters of nitrogenized surface layers of sliding friction couple by methods of X-ray structural analysis and tribotechnical tests, structure and performance properties of nitrogenized structural steels and alloys were studied. Namely pearlitic and martensitic steels (40Х, 38Х2МЮА, ВКС-7), model iron-based alloys with a BCC lattice, steels alloyed by Cr, Mo, Al in amount of up to 4 % (at.), iron-based alloys with FCC lattice, alloyed by Ni (29 % (at.)), Cr, Al, Ti in the amount of up to 4 % (at.), as well as austenitic high-chromium steels 12Х18Н10Т, 08Х16Г15Н5МАФ, steel 16Х3НВФМБ-Ш and high manganese steel 40Г14Н8Х3Б1. The surface saturation of the samples was made by gas, ion, gas-baric nitrogenizing and by ion implantation of nitrogen. The sum of macroscopic (tribotechnical) and microscopic (structural) indicators was evaluated, which characterize the physics and mechanics of friction process at various hierarchical levels. This sum of indicators also provides information on properties of antifriction coatings, modified layers and performance ability of the friction couple under conditions of contact deformation. It was established, that increasing of the nitrogenizing temperature from 540 up to 700 °C for alloys with a ferrite matrix results in a decrease of the hardness of the surface layer and physical broadening of X-ray lines. In this case, the relative wear resistance reaches maximum at 620 °C. For alloys with an austenitic matrix, an increase of hardness, broadening of X-ray lines and relative wear resistance occurs with increasing of temperature. These parameters grow in the sequence Fe−Ni, Fe−Ni−Al, Fe−Ni−Cr, Fe−Ni−Ti. Gas-baric nitrogenizing enables to obtain higher performance characteristics of parts (wear resistance and contact strength). Based on the generalization of the results of experimental studies of nitrogenized steels and alloys with various compositions and various crystal lattices, the most significant characteristics of the structural state and properties of near-surface microvolumes were established, that affect the level of surface destruction during friction, as follows: the size of the alloying element nitrides particles, the distance between them, the micro-deformation of the crystal lattice of the solid solution, the values of the physical broadening of the X-ray lines of the solid solution, its hardness and the change in hardness during friction, the plasticity reserve. Generalized criteria for the properties of the surface layer, taking into account the characteristics of the structure and properties of the nitrogenized layer and the zone of surface contact plastic deformation elaborated. Also methodological foundations for the structural assessment of the quality parameters of the surface layers of sliding friction couples elaborated. Bench tests have confirmed the effectiveness of the application of the generalized structure parameter and properties of surface layers for the selection of materials for the friction unit. The formulated conditions are recommended for optimizing the nitrogenizing technological process from the standpoint of tribology and choice of materials for friction couple.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950084 ◽  
Author(s):  
KAZIMIERA DUDEK ◽  
WOJCIECH SZCZYPINSKI-SALA ◽  
JANUSZ LUBAS

The present study discusses the influence of laser borided surface layer on the parameters of sliding couples lubricated by engine oil. The borided layer was created by laser remelting of a surface layer of steel samples coated with amorphous boron. The study of friction, wear, and lubrication was conducted on the pairs made of steel AISI 5045 and SAE-783 and SAE-48 bearing alloys which were lubricated with 15W/40 engine oil. The research showed important differences in the friction coefficient and temperature in the tested couple with laser borided surface layer. In the couples containing the counterparts with SAE-783 bearing alloy, the tested parameter of friction was higher than in the couple composed of counterparts with SAE-48 bearing alloy. The counterparts with SAE-48 showed more intensive wear in contact with the laser borided surface layer than the counterpart with SAE 783. The process of friction at the contact area of the sliding couple with laser borided surface layer leads to the destruction of the lubricating properties of 15W/40 engine oil and reduces its resistance to scuffing and seizure.


Author(s):  
K. D. Khromushkin ◽  
B. G. Ushakov ◽  
A. V. Kochergin ◽  
R. A. Suleev ◽  
O. N. Parmenova

The paper presents experimental data on the study of the friction parameters of hard alloys in sliding friction units, including the heating temperature, surface roughness, wear and friction coefficient, depending on the duration of the test and the friction path.


2021 ◽  
Vol 901 ◽  
pp. 219-225
Author(s):  
Elena V. Torskaya ◽  
Alexey M. Mezrin

Mechanical properties of surface layers of aluminum alloys before and after friction tests are studied by nanoindentation. The influence of the composition of the alloys on these properties is analyzed. It is obtained that as a result of wear and tear, relatively compliant layer is formed on the surface of one of the alloys. Another sample demonstrates relatively rigid film at the surface of the friction path. Conclusions about different mechanisms of the wear and tear of alloys are made based on the analysis.


1984 ◽  
Vol 44 ◽  
Author(s):  
Cheng T. Lee ◽  
D. E. Clark

AbstractZeta potentials of SRL-131-29.8% TOS simulated nuclear waste glasses leached in D.I. water, Al, Ca, Mg, and Zn chloride solutions at 90°C were measured as a function of leaching time. For short term leaching, the adsorption of Ca, Mg, Zn and Al reverses the glass surface potential from negative to positive. Colloids were found to be stable in D.I. water and AICl3 solutions after leaching, presumably due to the electrostatic repulsion between the glass surface and similarly charged particles. Colloids were not found in Mg, Zn or Ca chloride solutions after leaching; instead, a relatively thick metasilicate surface layer was formed on glass surfaces leached in these solutions. The concentration of Si in solution is reduced by the formation of these surface layers.


Sign in / Sign up

Export Citation Format

Share Document