EFFECTS OF SURFACE LOSS IN REELS SPECTRA OF SILVER

1997 ◽  
Vol 04 (05) ◽  
pp. 955-958 ◽  
Author(s):  
K. TÖKÉSI ◽  
L. KÖVÉR ◽  
D. VARGA ◽  
J. TÓTH ◽  
T. MUKOYAMA

The energy distribution of the electrons backscattered in the direction of the surface normal of polycrystalline silver samples was studied using reflected electron energy loss spectroscopy (REELS) at 200 eV and 2 keV primary beam energies. For modeling the electron scattering processes, the Monte Carlo simulation technique was used and the REELS spectra were calculated at various (25°, 50° and 75°, with respect to the surface normal) angles of primary beam incidence. The effects of the surface energy loss process in REELS are evaluated from the comparison of the experimental and simulated spectra.

2001 ◽  
Vol 7 (S2) ◽  
pp. 690-691
Author(s):  
Kenji Murata ◽  
Masaaki Yasuda ◽  
Syunji Yamauchi

Monte Carlo simulation of electron scattering has been widely used in various fields such as microanalysis, microscopy and microlithography. Various simulation models have been reported so far. in applications to quantitative x-ray microanalysis the accuracy of the model has been significantly improved by introducing the Mott cross section. However, in the analyses at low energies of an electron beam or at energies near the x-ray excitation energy, the simulation accuracy becomes worse. This is probably because the discrete energy loss process is not incorporated into the simulation model. to improve this default, we developed the model which includes the discrete energy loss process[l]. The outline of the model is described in the following.1)Elastic scatteringWe used the Mott cross section. The Mott cross sections for Al, Cu, Ag and Au elements are calculated at various energies. From this data base we obtain the differential elastic scattering cross section and the total elastic cross section for arbitarary elements and energies by using the interporation or the extrapolation.


Sign in / Sign up

Export Citation Format

Share Document