LASER BEAM SELF-FOCUSING IN PHOTOREFRACTIVE MATERIALS: OPTICAL LIMITING APPLICATION

2000 ◽  
Vol 09 (04) ◽  
pp. 441-450 ◽  
Author(s):  
D. WOLFERSBERGER ◽  
N. FRESSENGEAS ◽  
J. MAUFOY ◽  
G. KUGEL

This paper presents a way to achieve optical limiting using the self-focusing of a laser beam in a photorefractive medium. In this view, the protection is not based on the absorption of the beam energy in the limiting system but on a global defocusing of the light in the optical system. We have studied experimentally and theoretically the self-focusing of a single laser beam in electrically biased Bi 12 TiO 20 from the continuous to the pulsed regime. We show that photorefractive materials are, for given conditions, efficient against laser radiation on these two different time scales at a low energy level (nJ).

1999 ◽  
Vol 62 (4) ◽  
pp. 389-396 ◽  
Author(s):  
M. V. ASTHANA ◽  
A. GIULIETTI ◽  
DINESH VARSHNEY ◽  
M. S. SODHA

This paper presents an analysis of the relativistic self-focusing of a rippled Gaussian laser beam in a plasma. Considering the nonlinearity as arising owing to relativistic variation of mass, and following the WKB and paraxial-ray approximations, the phenomenon of self-focusing of rippled laser beams is studied for arbitrary magnitude of nonlinearity. Pandey et al. [Phys. Fluids82, 1221 (1990)] have shown that a small ripple on the axis of the main beam grows very rapidly with distance of propagation as compared with the self-focusing of the main beam. Based on this analogy, we have analysed relativistic self-focusing of rippled beams in plasmas. The relativistic intensities with saturation effects of nonlinearity allow the nonlinear refractive index in the paraxial regime to have a slower radial dependence, and thus the ripple extracts relatively less energy from its neighbourhood.


1986 ◽  
Vol 64 (9) ◽  
pp. 1341-1344 ◽  
Author(s):  
J. Hartikainen ◽  
J. Jaarinen ◽  
M. Luukkala

The surface deformation of oil by laser heating is presented. The self-focusing of the reflected beam and the generation of capillary waves are observed.


2021 ◽  
Author(s):  
Gunjan Purohit ◽  
Bineet Gaur ◽  
Pradeep Kothiyal ◽  
Amita Raizada

Abstract This paper presents a scheme for the generation of terahertz (THz) radiation by self-focusing of a cosh-Gaussian laser beam in the magnetized and rippled density plasma, when relativistic nonlinearity is operative. The strong coupling between self-focused laser beam and pre-existing density ripple produces nonlinear current that originates THz radiation. THz radiation is produced by the interaction of the cosh-Gaussian laser beam with electron plasma wave under the appropriate phase matching conditions. Expressions for the beamwidth parameter of cosh-Gaussian laser beam and the electric vector of the THz radiation have been obtained using higher-order paraxial theory and solved numerically. The self-focusing of the cosh-Gaussian laser beam and its effect on the generated THz amplitude have been studied for specific laser and plasma parameters. Numerical study has been performed on various values of the decentered parameter, incident laser intensity, magnetic field, and relative density. The results have also been compared with the paraxial region as well as the Gaussian profile of laser beam. Numerical results suggest that the self-focusing of the cosh-Gaussian laser beam and the amplitude of THz radiation increase in the extended paraxial region compared to the paraxial region. It is also observed that the focusing of the cosh-Gaussian laser beam in the magnetized plasma and the amplitude of the THz radiation increases at higher values of the decentered parameter.


1977 ◽  
Vol 40 (1) ◽  
pp. 315-320
Author(s):  
M. S. Sodha ◽  
V. K. Tripathi ◽  
D. P. Singh

2016 ◽  
Vol 34 (4) ◽  
pp. 621-630 ◽  
Author(s):  
B. Gaur ◽  
P. Rawat ◽  
G. Purohit

AbstractThis work presents an investigation of the self-focusing of a high-power laser beam having cosh Gaussian intensity profile in a collissionless plasma under weak relativistic-ponderomotove (RP) and only relativistic regimes and its effect on the excitation of electron plasma wave (EPW), and particle acceleration process. Nonlinear differential equations have been set up for the beam width and intensity of cosh Gaussian laser beam (CGLB) and EPW using the Wentzel-Kramers-Brillouin and paraxial-ray approximations as well as fluid equations. The numerical results are presented for different values of decentered parameter ‘b’ and intensity parameter ‘a’ of CGLB. Strong self-focusing is observed in RP regime as compared with only relativistic nonlinearity. Numerical analysis shows that these parameters play crucial role on the self-focusing of the CGLB and the excitation of EPW. It is also found that the intensity/amplitude of EPW increases with b and a. Further, nonlinear coupling between the CGLB and EPW leads to the acceleration of electrons. The intensity of EPW and energy gain by electrons is significantly affected by including the ponderomotive nonlinearity. The energy of the accelerated electrons is increased by increasing the value of ‘b’. The results are presented for typical laser and plasma parameters.


1998 ◽  
Vol 60 (4) ◽  
pp. 811-818 ◽  
Author(s):  
RAJ KUMAR ◽  
H. D. PANDEY ◽  
R. P. SHARMA ◽  
M. KUMAR

The paper presents a paraxial theory of the relativistic cross-focusing of two coaxial Gaussian laser beams of different frequencies in a homogeneous plasma. We discuss the self-focusing of a weaker laser beam in the plasma due to the optical inhomogeneities introduced by another stronger copropagating laser beam. In the presence of the second stronger beam (Pcr21<P2<Pcr22), the plasma behaves as an oscillatory waveguide for the first, weaker, beam (P1<Pcr11) as it propagates in the plasma. When both the beams are strong (Pcr11,21<P1,2<Pcr12,22), the nonlinearities introduced by the relativistic effect are additive in nature, such that one beam can undergo oscillatory self-focusing and the other simultaneously defocusing, and vice versa. A comparison reveals that cross-focusing due to relativistic nonlinearity is possible for a wider range of powers of the laser pulses than is cross-focusing due to ponderomotive nonlinearity. Relativistic cross-focusing is important in plasma beat-wave excitation and collective laser particle accelerators.


2020 ◽  
Vol 19 (6) ◽  
pp. 507-511
Author(s):  
A. S. Garkavenko ◽  
V. A. Mokritsky ◽  
O. V. Maslov ◽  
A. V. Sokolov

Light self-destruction-degradation of the second type has been observed in samples of semiconductor lasers with electronic  energy  pumping with high  optical  homogeneity and good quality of surface treatment.  In these  samples,  damage appeared in the form of cords perpendicular to the ends of the resonator. According to the current understanding of the passage of powerful light streams through various media, the emergence of narrow light channels is due to the phenomenon of self-focusing. It refers to the fundamental physical mechanisms of propagation of laser radiation and is caused by nonlinear phenomena arising in a medium under the influence of high-power laser radiation. The physical reason for self-focusing is an increase in the refractive index n in a strong light field. Thermal self-focusing is the most probable cause of radiation redistribution in the active region of the crystal. However, it is possible that in the initial stage of the appearance of light channels a certain role is played by the growth of the intensity of radiation in certain sections of the crystal because of the instability of generation or small fluctuations in the pump current density. Then the process acquires an avalanche character, since the localization of the ray in the channel increases the density of light radiation which can lead to overheating of the substance and the activation of the thermal self-focusing mechanism. The experiments performed in this paper have shown that optically homogeneous crystals possess maximum resistance to degradation processes. In them,  the critical power of light destruction is determined by the self-focusing threshold of radiation in a material. Since the nonlinear addition to the refractive index Δn = n2E2 at the self-focusing threshold is determined by the change in the concentration of non-equilibrium carriers ΔN(E2), the value of the maximum fluctuation DΔNmax itself is proportional to the value of the non-equilibrium carrier concentration at the generation threshold ΔNpores and the relative excess of the generation threshold J = (j – jn)/jn. Thus, a low threshold concentration of non-equilibrium carriers is one of the conditions for increasing material resistance to degradation processes. In doped crystals ΔNpores is less than in  pure materials. This, perhaps, explains the rather higher value of Pcritial  in the optimally doped homogeneous n-GaAs. Smaller values of Pcritial in p-type samples doped with zinc can be associated not only with the inhomogeneity of these crystals, but also with large generation thresholds. In addition, the cross section for absorption of radiation by holes is about 3–4 times larger than by electrons, which can also reduce the self-destruction threshold of lasers. At Т = 300 K, the lasing thresholds are higher that naturally reduces the value of the self-focusing threshold.


2016 ◽  
Vol 332 ◽  
pp. 73-78 ◽  
Author(s):  
N.A. Panov ◽  
V.A. Makarov ◽  
K.S. Grigoriev ◽  
M.S. Yatskevitch ◽  
O.G. Kosareva

Sign in / Sign up

Export Citation Format

Share Document