GROUND STATE OF THE YUKAWA MODEL WITH CUTOFFS

Author(s):  
TOSHIMITSU TAKAESU

The ground state of the Yukawa model is considered. The Yukawa model describes the system of a Dirac field interacting with a Klein–Gordon field. By introducing ultraviolet cutoffs and spatial cutoffs, the total Hamiltonian is defined as a self-adjoint operator on a boson–fermion Fock space. It is shown that the total Hamiltonian has a positive spectral gap for all values of coupling constants. In particular, the existence of the ground state is proven.

Author(s):  
Toshimitsu Takaesu

An interaction system of a fermionic quantum field is considered. The state space is defined by a tensor product space of a fermion Fock space and a Hilbert space. It is assumed that the total Hamiltonian is a self-adjoint operator on the state space and bounded from below. Then it is proven that a subset of real numbers is the essential spectrum of the total Hamiltonian. It is applied to a Yukawa interaction system, which is a system of a Dirac field coupled to a Klein–Gordon, and the HVZ theorem is obtained.


2003 ◽  
Vol 15 (03) ◽  
pp. 271-312 ◽  
Author(s):  
FUMIO HIROSHIMA

One electron system minimally coupled to a quantized radiation field is considered. It is assumed that the quantized radiation field is massless, and no infrared cutoff is imposed. The Hamiltonian, H, of this system is defined as a self-adjoint operator acting on L2 (ℝ3) ⊗ ℱ ≅ L2 (ℝ3; ℱ), where ℱ is the Boson Fock space over L2 (ℝ3 × {1, 2}). It is shown that the ground state, ψg, of H belongs to [Formula: see text], where N denotes the number operator of ℱ. Moreover, it is shown that for almost every electron position variable x ∈ ℝ3 and for arbitrary k ≥ 0, ‖(1 ⊗ Nk/2) ψg (x)‖ℱ ≤ Dk e-δ|x|m+1 with some constants m ≥ 0, Dk > 0, and δ > 0 independent of k. In particular [Formula: see text] for 0 < β < δ/2 is obtained.


2009 ◽  
Vol 2009 ◽  
pp. 1-52 ◽  
Author(s):  
J.-M. Barbaroux ◽  
J.-C. Guillot

We consider a Hamiltonian with cutoffs describing the weak decay of spin 1 massive bosons into the full family of leptons. The Hamiltonian is a self-adjoint operator in an appropriate Fock space with a unique ground state. We prove a Mourre estimate and a limiting absorption principle above the ground state energy and below the first threshold for a sufficiently small coupling constant. As a corollary, we prove the absence of eigenvalues and absolute continuity of the energy spectrum in the same spectral interval.


1987 ◽  
Vol 42 (2) ◽  
pp. 197-206 ◽  
Author(s):  
M. Meyer ◽  
U. Andresen ◽  
H. Dreizler

The microwave spectrum of 2-chloropyridine, 2-Cl(C5H4N), has been studied to determine the 35Cl, 37Cl and 14N nuclear quadrupole coupling constants. The results are discussed within a simple MO theory. We propose an approximate r0-structure under certain assumptions. In addition to the ground state we observed one vibrationally excited state of both chlorine isotopic species of 2-chloropyridine.


2016 ◽  
Vol 52 (6) ◽  
pp. 1174-1177 ◽  
Author(s):  
Yousoon Lee ◽  
Ie-Rang Jeon ◽  
Khalil A. Abboud ◽  
Ricardo García-Serres ◽  
Jason Shearer ◽  
...  

A [3Fe–3(μ-S)]3+ cluster is reported in which each ferric center has a distorted trigonal pyramidal geometry, with an S = 1/2 ground state for the cluster and unusually anisotropic hyperfine coupling constants as determined by variable temperature magnetometry and Mössbauer spectroscopy.


1975 ◽  
Vol 30 (4) ◽  
pp. 541-548 ◽  
Author(s):  
P. J. Mjöberg ◽  
W. M. Ralowski ◽  
S. O. Ljunggren

Abstract The microwave spectra of the two 79Br and 81Br isotopic species of 2-bromothiophene have been measured in the region 18000-40000 MHz.For both isotopic species, the rotational constants of the ground state and one vibrationally excited state were determined, as well as the centrifugal distortion coefficients of the ground state. The ground state rotational constants in MHz are as follows:C4H332S79Br C4H332S81BrA = 5403.432 ±0.111 5403.563 ±0.095,B = 1139.0689±0.0010 1126.5173±0.0011 C = 940.5142±0.0018 931.9315±0.0009.In order to perform a second-order perturbation treatment of the quadrupole interaction, the matrix elements of products of direction cosines in terms of the symmetric top wave functions have been derived. By the first-and second-order perturbation analysis of the hyperfine splittings of the rotational lines, the nuclear quadrupole coupling constants have been determined. The values in MHz areXaa = 592.7 ±1.5 493.7 ±1.5,Xbb = -295.3 ±0.6 -245.6 ±0.7, Xcc = -297.4 ±1.6 -248.1 ±1.6,Xab = 80 ±9 64±8 ,in the principal axes system of the molecule.


2004 ◽  
Vol 01 (02) ◽  
pp. 271-314 ◽  
Author(s):  
JEAN-MARIE BARBAROUX ◽  
MOUEZ DIMASSI ◽  
JEAN-CLAUDE GUILLOT

We consider a Hamiltonian with ultraviolet and infrared cutoffs, describing the interaction of relativistic electrons and positrons in the Coulomb potential with photons in Coulomb gauge. The interaction includes both interaction of the current density with transversal photons and the Coulomb interaction of charge density with itself. We prove that the Hamiltonian is self-adjoint and has a ground state for sufficiently small coupling constants.


2010 ◽  
Vol 140 (5) ◽  
pp. 1011-1039 ◽  
Author(s):  
Hiroaki Kikuchi

AbstractWe study the orbital stability of standing waves for the Klein–Gordon–Schrödinger system in two spatial dimensions. It is proved that the standing wave is stable if the frequency is sufficiently small. To prove this, we obtain the uniqueness of ground state and investigate the spectrum of the appropriate linearized operator by using the perturbation method developed by Genoud and Stuart and Lin and Wei. Then we apply to our system the general theory of Grillakis, Shatah and Strauss.


Sign in / Sign up

Export Citation Format

Share Document