scholarly journals CHAIN MODELS, TREES OF SINGULAR CARDINALITY AND DYNAMIC EF-GAMES

2011 ◽  
Vol 11 (01) ◽  
pp. 61-85 ◽  
Author(s):  
MIRNA DŽAMONJA ◽  
JOUKO VÄÄNÄNEN

Let κ be a singular cardinal. Karp's notion of a chain model of size κ is defined to be an ordinary model of size κ along with a decomposition of it into an increasing union of length cf (κ). With a notion of satisfaction and (chain)-isomorphism such models give an infinitary logic largely mimicking first order logic. In this paper we associate to this logic a notion of a dynamic EF-game which gauges when two chain models are chain-isomorphic. To this game is associated a tree which is a tree of size κ with no κ-branches (even no cf (κ)-branches). The measure of how non-isomorphic the models are is reflected by a certain order on these trees, called reduction. We study the collection of trees of size κ with no κ-branches under this notion and prove that when cf (κ) = ω this collection is rather regular; in particular it has universality number exactly κ+. Such trees are then used to develop a descriptive set theory of the space cf (κ)κ. The main result of the paper gives in the case of κ strong limit singular an exact connection between the descriptive set-theoretic complexity of the chain isomorphism orbit of a model, the reduction order on the trees and winning strategies in the corresponding dynamic EF games. In particular we obtain a neat analog of the notion of Scott watershed from the Scott analysis of countable models.

2003 ◽  
Vol 68 (1) ◽  
pp. 65-131 ◽  
Author(s):  
Andreas Blass ◽  
Yuri Gurevich

AbstractThis paper developed from Shelah's proof of a zero-one law for the complexity class “choiceless polynomial time,” defined by Shelah and the authors. We present a detailed proof of Shelah's result for graphs, and describe the extent of its generalizability to other sorts of structures. The extension axioms, which form the basis for earlier zero-one laws (for first-order logic, fixed-point logic, and finite-variable infinitary logic) are inadequate in the case of choiceless polynomial time; they must be replaced by what we call the strong extension axioms. We present an extensive discussion of these axioms and their role both in the zero-one law and in general.


1969 ◽  
Vol 34 (2) ◽  
pp. 226-252 ◽  
Author(s):  
Jon Barwise

In recent years much effort has gone into the study of languages which strengthen the classical first-order predicate calculus in various ways. This effort has been motivated by the desire to find a language which is(I) strong enough to express interesting properties not expressible by the classical language, but(II) still simple enough to yield interesting general results. Languages investigated include second-order logic, weak second-order logic, ω-logic, languages with generalized quantifiers, and infinitary logic.


2018 ◽  
Vol 16 (3) ◽  
pp. 5-15
Author(s):  
V. V. Tselishchev

The application of game-theoretic semantics for first-order logic is based on a certain kind of semantic assumptions, directly related to the asymmetry of the definition of truth and lies as the winning strategies of the Verifier (Abelard) and the Counterfeiter (Eloise). This asymmetry becomes apparent when applying GTS to IFL. The legitimacy of applying GTS when it is transferred to IFL is based on the adequacy of GTS for FOL. But this circumstance is not a reason to believe that one can hope for the same adequacy in the case of IFL. Then the question arises if GTS is a natural semantics for IFL. Apparently, the intuitive understanding of negation in natural language can be explicated in formal languages in various ways, and the result of an incomplete grasp of the concept in these languages can be considered a certain kind of anomalies, in view of the apparent simplicity of the explicated concept. Comparison of the theoretical-model and game theoretic semantics in application to two kinds of language – the first-order language and friendly-independent logic – allows to discover the causes of the anomaly and outline ways to overcome it.


Author(s):  
Bernd Buldt

An infinitary logic arises from ordinary first-order logic when one or more of its finitary properties is allowed to become infinite, for example, by admitting infinitely long formulas or infinitely long or infinitely branched proof figures. The need to extend first-order logic became pressing in the late 1950s when it was realized that many of the fundamental notions of mathematics cannot be expressed in first-order logic in a way that would allow for their logical analysis. Because infinitary logics often do not suffer the same limitation, they have become an essential tool in mathematical logic.


1975 ◽  
Vol 40 (4) ◽  
pp. 567-575 ◽  
Author(s):  
Erik Ellentuck

Let L be a first order logic and the infinitary logic (as described in [K, p. 6] over L. Suslin logic is obtained from by adjoining new propositional operators and . Let f range over elements of ωω and n range over elements of ω. Seq is the set of all finite sequences of elements of ω. If θ: Seq → is a mapping into formulas of then and are formulas of LA. If is a structure in which we can interpret and h is an -assignment then we extend the notion of satisfaction from to by definingwhere f ∣ n is the finite sequence consisting of the first n values of f. We assume that has ω symbols for relations, functions, constants, and ω1 variables. θ is valid if θ ⊧ [h] for every h and is valid if -valid for every . We address ourselves to the problem of finding syntactical rules (or nearly so) which characterize validity .


1989 ◽  
Vol 54 (1) ◽  
pp. 122-137
Author(s):  
Rami Grossberg

AbstractLet L(Q) be first order logic with Keisler's quantifier, in the λ+ interpretation (= the satisfaction is defined as follows: M ⊨ (Qx)φ(x) means there are λ+ many elements in M satisfying the formula φ(x)).Theorem 1. Let λ be a singular cardinal; assume □λ and GCH. If T is a complete theory in L(Q) of cardinality at most λ, and p is an L(Q) 1-type so that T strongly omits p( = p has no support, to be defined in §1), then T has a model of cardinality λ+ in the λ+ interpretation which omits p.Theorem 2. Let λ be a singular cardinal, and let T be a complete first order theory of cardinality λ at most. Assume □λ and GCH. If Γ is a smallness notion then T has a model of cardinality λ+ such that a formula φ(x) is realized by λ+ elements of M iff φ(x) is not Γ-small. The theorem is proved also when λ is regular assuming λ = λ<λ. It is new when λ is singular or when ∣T∣ = λ is regular.Theorem 3. Let λ be singular. If Con(ZFC + GCH + ∃κ) [κ is a strongly compact cardinal]), then the following is consistent: ZFC + GCH + the conclusions of all above theorems are false.


1997 ◽  
Vol 4 (3) ◽  
Author(s):  
Carsten Butz ◽  
Ieke Moerdijk

In this paper, we will present a definability theorem for first order logic.<br />This theorem is very easy to state, and its proof only uses elementary tools. To explain the theorem, let us first observe that if M is a model of a theory T in a language L, then, clearly, any definable subset S M (i.e., a subset S = {a | M |= phi(a)} defined by some formula phi) is invariant under all<br />automorphisms of M. The same is of course true for subsets of M" defined<br />by formulas with n free variables.<br /> Our theorem states that, if one allows Boolean valued models, the converse holds. More precisely, for any theory T we will construct a Boolean valued model M, in which precisely the T-provable formulas hold, and in which every (Boolean valued) subset which is invariant under all automorphisms of M is definable by a formula of L.<br />Our presentation is entirely selfcontained, and only requires familiarity<br />with the most elementary properties of model theory. In particular, we have added a first section in which we review the basic definitions concerning<br />Boolean valued models.<br />The Boolean algebra used in the construction of the model will be presented concretely as the algebra of closed and open subsets of a topological space X naturally associated with the theory T. The construction of this space is closely related to the one in [1]. In fact, one of the results in that paper could be interpreted as a definability theorem for infinitary logic, using topological rather than Boolean valued models.


1981 ◽  
Vol 24 (2) ◽  
pp. 219-223 ◽  
Author(s):  
Xavier Caicedo

A set of sentences T is called independent if for every . It is countably independent if every countable subset is independent. In flnitary first order logic, Lωω, the two notions coincide because of compactness. This is not the case for infinitary logic.


2016 ◽  
Vol 81 (3) ◽  
pp. 1047-1068 ◽  
Author(s):  
SY-DAVID FRIEDMAN ◽  
RADEK HONZIK

AbstractLet M be a transitive model of ZFC. We say that a transitive model of ZFC, N, is an outer model of M if M ⊆ N and ORD ∩ M = ORD ∩ N. The outer model theory of M is the collection of all formulas with parameters from M which hold in all outer models of M (which exist in a universe in which M is countable; this is independent of the choice of such a universe). Satisfaction defined with respect to outer models can be seen as a useful strengthening of first-order logic. Starting from an inaccessible cardinal κ, we show that it is consistent to have a transitive model M of ZFC of size κ in which the outer model theory is lightface definable, and moreover M satisfies V = HOD. The proof combines the infinitary logic L∞,ω, Barwise’s results on admissible sets, and a new forcing iteration of length strictly less than κ+ which manipulates the continuum function on certain regular cardinals below κ. In the appendix, we review some unpublished results of Mack Stanley which are directly related to our topic.


1961 ◽  
Vol 58 ◽  
pp. 1072-1077 ◽  
Author(s):  
Frank Stahl
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document