scholarly journals Hereditary automorphic Lie algebras

2019 ◽  
Vol 22 (08) ◽  
pp. 1950076
Author(s):  
Vincent Knibbeler ◽  
Sara Lombardo ◽  
Jan A. Sanders

We show that automorphic Lie algebras which contain a Cartan subalgebra with a constant-spectrum, called hereditary, are completely described by 2-cocycles on a classical root system taking only two different values. This observation suggests a novel approach to their classification. By determining the values of the cocycles on opposite roots, we obtain the Killing form and the abelianization of the automorphic Lie algebra. The results are obtained by studying equivariant vectors on the projective line. As a byproduct, we describe a method to reduce the computation of the infinite-dimensional space of said equivariant vectors to a finite-dimensional linear computation and the determination of the ring of automorphic functions on the projective line.

2015 ◽  
Vol 3 ◽  
pp. 105-116
Author(s):  
Jozef Kačur ◽  
Jozef Minár

In this paper we present a method for the determination of the hydraulic permeability for flow in partially saturated porous media. The dependence of hydraulic permeability on effective saturation is not assumed to be a member of any specific finite dimensional class of functions (e.g. vanGenuchten-Mualem, Burdin-Mualem, Brook-Corey). Instead, an infinite dimensional space of functions with limited a priori assumptions (e.g. smoothness, monotonicity) is considered. Consequently, we face a more challenging problem compared to the finite-dimensional case, in which only few tuning parameters need to be determined. We consider the case of 1D unsaturated flow and assume that the data are collected at the outflow of the sample. The hydraulic permeability is determined in an iterative way. We minimize the cost functional reflecting the discrepancy between the measured and computed data. In doing so, we use the Gateaux differential to obtain the direction of the descent.


1976 ◽  
Vol 28 (1) ◽  
pp. 174-180 ◽  
Author(s):  
Stephen Berman

A well known result in the theory of Lie algebras, due to H. Zassenhaus, states that if is a finite dimensional Lie algebra over the field K such that the killing form of is non-degenerate, then the derivations of are all inner, [3, p. 74]. In particular, this applies to the finite dimensional split simple Lie algebras over fields of characteristic zero. In this paper we extend this result to a class of Lie algebras which generalize the split simple Lie algebras, and which are defined by Cartan matrices (for a definition see § 1). Because of the fact that the algebras we consider are usually infinite dimensional, the method we employ in our investigation is quite different from the standard one used in the finite dimensional case, and makes no reference to any associative bilinear form on the algebras.


2018 ◽  
Vol 40 (8) ◽  
pp. 2219-2238 ◽  
Author(s):  
MARK PIRAINO

We study the ergodic properties of a class of measures on $\unicode[STIX]{x1D6F4}^{\mathbb{Z}}$ for which $\unicode[STIX]{x1D707}_{{\mathcal{A}},t}[x_{0}\cdots x_{n-1}]\approx e^{-nP}\Vert A_{x_{0}}\cdots A_{x_{n-1}}\Vert ^{t}$, where ${\mathcal{A}}=(A_{0},\ldots ,A_{M-1})$ is a collection of matrices. The measure $\unicode[STIX]{x1D707}_{{\mathcal{A}},t}$ is called a matrix Gibbs state. In particular, we give a sufficient condition for a matrix Gibbs state to have the weak Bernoulli property. We employ a number of techniques to understand these measures, including a novel approach based on Perron–Frobenius theory. We find that when $t$ is an even integer the ergodic properties of $\unicode[STIX]{x1D707}_{{\mathcal{A}},t}$ are readily deduced from finite-dimensional Perron–Frobenius theory. We then consider an extension of this method to $t>0$ using operators on an infinite- dimensional space. Finally, we use a general result of Bradley to prove the main theorem.


1965 ◽  
Vol 25 ◽  
pp. 211-220 ◽  
Author(s):  
Hiroshi Kimura

Let g be a semi-simple Lie algebra over an algebraically closed field K of characteristic 0. For finite dimensional representations of g, the following important results are known; 1) H1(g, V) = 0 for any finite dimensional g space V. This is equivalent to the complete reducibility of all the finite dimensional representations,2) Determination of all irreducible representations in connection with their highest weights.3) Weyl’s formula for the character of irreducible representations [9].4) Kostant’s formula for the multiplicity of weights of irreducible representations [6],5) The law of the decomposition of the tensor product of two irreducible representations [1].


2004 ◽  
Vol 69 (2) ◽  
pp. 191-202 ◽  
Author(s):  
A. J. Calderón Martín

We introduce the concept of Cartan decomposition relative to a Cartan subalgebra H in the sense of Y. Billig and A. Pianzola for involutive complex Lie algebras L of arbitrary dimension. If L has such a decomposition and is infinite dimensional and simple, we show it is *-isomorphic to a direct limit of classical finite dimensional simple involutive Lie algebras of the same type A, B, C, or D.


2005 ◽  
Vol 02 (03) ◽  
pp. 251-258
Author(s):  
HANLIN HE ◽  
QIAN WANG ◽  
XIAOXIN LIAO

The dual formulation of the maximal-minimal problem for an objective function of the error response to a fixed input in the continuous-time systems is given by a result of Fenchel dual. This formulation probably changes the original problem in the infinite dimensional space into the maximal problem with some restrained conditions in the finite dimensional space, which can be researched by finite dimensional space theory. When the objective function is given by the norm of the error response, the maximum of the error response or minimum of the error response, the dual formulation for the problems of L1-optimal control, the minimum of maximal error response, and the minimal overshoot etc. can be obtained, which gives a method for studying these problems.


1974 ◽  
Vol 11 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Ian N. Stewart

Infinite-dimensional soluble Lie algebras can possess maximal subalgebras which are finite-dimensional. We give a fairly complete description of such algebras: over a field of prime characteristic they do not exist; over a field of zero characteristic then, modulo the core of the aforesaid maximal subalgebra, they are split extensions of an abelian minimal ideal by the maximal subalgebra. If the field is algebraically closed, or if the maximal subalgebra is supersoluble, then all finite-dimensional maximal subalgebras are conjugate under the group of automorphisms generated by exponentials of inner derivations by elements of the Fitting radical. An example is given to indicate the differences encountered in the insoluble case, and the nonexistence of group-theoretic analogues is briefly discussed.


2004 ◽  
Vol 16 (07) ◽  
pp. 823-849 ◽  
Author(s):  
T. SKRYPNYK

We construct a family of infinite-dimensional quasigraded Lie algebras, that could be viewed as deformation of the graded loop algebras and admit Kostant–Adler scheme. Using them we obtain new integrable hamiltonian systems admitting Lax-type representations with the spectral parameter.


2007 ◽  
Vol 2007 ◽  
pp. 1-24 ◽  
Author(s):  
Abdenacer Makhlouf

The aim of this paper is to give an overview and to compare the different deformation theories of algebraic structures. In each case we describe the corresponding notions of degeneration and rigidity. We illustrate these notions by examples and give some general properties. The last part of this work shows how these notions help in the study of varieties of associative algebras. The first and popular deformation approach was introduced by M. Gerstenhaber for rings and algebras using formal power series. A noncommutative version was given by Pinczon and generalized by F. Nadaud. A more general approach called global deformation follows from a general theory by Schlessinger and was developed by A. Fialowski in order to deform infinite-dimensional nilpotent Lie algebras. In a nonstandard framework, M. Goze introduced the notion of perturbation for studying the rigidity of finite-dimensional complex Lie algebras. All these approaches share the common fact that we make an “extension” of the field. These theories may be applied to any multilinear structure. In this paper, we will be dealing with the category of associative algebras.


1982 ◽  
Vol 34 (6) ◽  
pp. 1215-1239 ◽  
Author(s):  
L. J. Santharoubane

Introduction. The natural problem of determining all the Lie algebras of finite dimension was broken in two parts by Levi's theorem:1) the classification of semi-simple Lie algebras (achieved by Killing and Cartan around 1890)2) the classification of solvable Lie algebras (reduced to the classification of nilpotent Lie algebras by Malcev in 1945 (see [10])).The Killing form is identically equal to zero for a nilpotent Lie algebra but it is non-degenerate for a semi-simple Lie algebra. Therefore there was a huge gap between those two extreme cases. But this gap is only illusory because, as we will prove in this work, a large class of nilpotent Lie algebras is closely related to the Kac-Moody Lie algebras. These last algebras could be viewed as infinite dimensional version of the semisimple Lie algebras.


Sign in / Sign up

Export Citation Format

Share Document