TORSIONAL BUCKLING OF FUNCTIONALLY GRADED CYLINDRICAL SHELLS WITH TEMPERATURE-DEPENDENT PROPERTIES

2013 ◽  
Vol 14 (01) ◽  
pp. 1350048 ◽  
Author(s):  
JIABIN SUN ◽  
XINSHENG XU ◽  
C. W. LIM

Based on Hamilton's principle, a new accurate solution methodology is developed to study the torsional bifurcation buckling of functionally graded cylindrical shells in a thermal environment. The effective properties of functionally graded materials (FGMs) are assumed to be functions of the ambient temperature as well as the thickness coordinate of the shell. By applying Donnell's shell theory, the lower-order Hamiltonian canonical equations are established, from which the eigenvalues and eigenvectors are solved as the critical loads and buckling modes of the shell of concern, respectively. The effects of various aspects, including the combined in-plane and transverse boundary conditions, dimensionless geometric parameters, FGM parameters and changing thermal surroundings, are discussed in detail. The results reveal that the in-plane axial edge supports do have a certain influence on the buckling loads. On the other hand, the transverse boundary conditions only affect extremely short shells. With increasing thermal loads, the material volume fraction has a different influence on the critical stresses. It is concluded that the optimized FGM mixtures to withstand thermal torsional buckling are Si 3 N 4/SUS304 and Al 2 O 3/SUS304 among the materials studied in this paper.

Author(s):  
Nguyen Thi Phuong ◽  
Dang Thanh Luan ◽  
Vu Hoai Nam ◽  
Pham Thanh Hieu

A new nonlinear approach on the buckling and postbuckling of functionally graded orthogonal and/or spiral-stiffened circular cylindrical shells subjected to torsional loads is proposed in this paper. The shells skin are stiffened by eccentrically rings, stringers, and/or spiral stiffeners at the surface of shells assuming that the material distribution laws of shell skin and stiffeners are graded by two distribution models. Lekhnitskii’s smeared stiffeners technique is improved for spiral stiffeners with effect of thermal terms. This is the significant novelty and scientific contribution of this paper. Theoretical formulations were established by using the Donnell shell theory taking into account the geometrical nonlinearity of von Kármán. The obtained results investigated in numerical forms show effects of volume fraction exponent of shell skin and stiffeners, geometrical parameter and stiffeners on the torsional buckling, and postbuckling behavior of functionally graded cylindrical shells. Especially, very large effects of spiral stiffeners on torsional stability behavior are obtained in comparison with same quantity material of orthogonal stiffeners.


Author(s):  
Hoang Van Tung

Buckling and postbuckling behaviors of nanocomposite cylindrical shells reinforced by single walled carbon nanotubes (SWCNTs), surrounded by an elastic medium, exposed to a thermal environment and subjected to uniform axial compression are investigated in this paper. Material properties of carbon nanotubes (CNTs) and isotropic matrix are assumed to be temperature dependent, and effective properties of nanocomposite are estimated by extended rule of mixture. The CNTs are embedded into matrix via uniform distribution (UD) or functionally graded (FG) distribution along the thickness direction. Governing equations are based on Donnell’s classical shell theory taking into account von Karman-Donnell nonlinear terms and interaction between the shell and surrounding elastic medium. Three-term form of deflection and stress function are assumed to satisfy simply supported boundary conditions and Galerkin method is applied to obtain load-deflection relation from which buckling and postbuckling behaviors are analyzed. Numerical examples are carried out to analyze the effects of CNT volume fraction and distribution types, geometrical ratios, environment temperature and surrounding elastic foundation on the buckling loads and postbuckling strength of CNTRC cylindrical shells.


2020 ◽  
Vol 12 (07) ◽  
pp. 2050072
Author(s):  
Vu Hoai Nam ◽  
Nguyen-Thoi Trung ◽  
Nguyen Thi Phuong ◽  
Vu Minh Duc ◽  
Vu Tho Hung

This paper deals with the nonlinear large deflection torsional buckling of functionally graded carbon nanotube (CNT) orthogonally reinforced composite cylindrical shells surrounded by Pasternak’s elastic foundations with the thermal effect. The shell is made by two layers where the polymeric matrix is reinforced by the CNTs in longitudinal and circumferential directions for outer and inner layers, respectively. The stability equation system is obtained by combining the Donnell’s shell theory, von Kármán nonlinearity terms, the circumferential condition in average sense and three-state solution form of deflection. The critical torsional buckling load, postbuckling load-deflection and the load-end shortening expressions are obtained by applying the Galerkin procedure. The effects of temperature change, foundation parameters, geometrical properties and CNT distribution law on the nonlinear behavior of cylindrical shell are numerically predicted. Especially, the effect of orthogonal reinforcement in comparison with longitudinal and circumferential reinforcement on the torsional buckling behavior of shells is observed.


2018 ◽  
Vol 18 (10) ◽  
pp. 1850123 ◽  
Author(s):  
Hamed Safarpour ◽  
Kianoosh Mohammadi ◽  
Majid Ghadiri ◽  
Mohammad M. Barooti

This article investigates the flexural vibration of temperature-dependent and carbon nanotube-reinforced (CNTR) cylindrical shells made of functionally graded (FG) porous materials under various kinds of thermal loadings. The equivalent material properties of the cylindrical shell of concern are estimated using the rule of mixture. Both the cases of uniform distribution (UD) and FG distribution patterns of reinforcements are considered. Thermo-mechanical properties of the cylindrical shell are supposed to vary through the thickness and are estimated using the modified power-law rule, by which the porosities with even and uneven types are approximated. As the porosities occur inside the FG materials during the manufacturing process, it is necessary to consider their impact on the vibration behavior of shells. The present study is featured by consideration of different types of porosities in various CNT reinforcements under various boundary conditions in a single model. The governing equations and boundary conditions are developed using Hamilton's principle and solved by the generalized differential quadrature method. The accuracy of the present results is verified by comparison with existing ones and those by Navier's method. The results show that the length to radius ratio and temperature, as well as CNT reinforcement, porosity, thermal loading, and boundary conditions, play an important role on the natural frequency of the cylindrical shell of concern in thermal environment.


2016 ◽  
Vol 829 ◽  
pp. 90-94
Author(s):  
Seok Hyeon Kang ◽  
Ji Hwan Kim

In thermal environment, vibration behavior of Functionally Graded Materials (FGMs) plates is investigated, and the materials are developed with mixing ceramic and metal. Present study is based on the first-order shear deformation theory of plate. Then, mixture methods such as Power law (P-) and Sigmoid (S-) models are chosen. According to a volume fraction, the material properties are assumed to vary continuously through the thickness direction and to be temperature dependent properties. Further, thermal effects are considered as uniform temperature rise and one dimensional heat transfer. For the structure analysis, FEM is used to obtain the natural frequencies based on the virtual work principle.


Author(s):  
S. F. Nikrad ◽  
A. Kanellopoulos ◽  
M. Bodaghi ◽  
Z. T. Chen ◽  
A. Pourasghar

AbstractThe in-plane thermoelastic response of curved beams made of porous materials with different types of functionally graded (FG) porosity is studied in this research contribution. Nonlinear governing equations are derived based on the first-order shear deformation theory along with the nonlinear Green strains. The nonlinear governing equations are solved by the aid of the Rayleigh–Ritz method along with the Newton–Raphson method. The modified rule-of-mixture is employed to derive the material properties of imperfect FG porous curved beams. Comprehensive parametric studies are conducted to explore the effects of volume fraction and various dispersion patterns of porosities, temperature field, and arch geometry as well as boundary conditions on the nonlinear equilibrium path and stability behavior of the FG porous curved beams. Results reveal that dispersion and volume fraction of porosities have a significant effect on the thermal stability path, maximum stress, and bending moment at the crown of the curved beams. Moreover, the influence of porosity dispersion and structural geometry on the central radial and in-plane displacement of the curved beams is evaluated. Results show that various boundary conditions make a considerable difference in the central radial displacements of the curved beams with the same porosity dispersion. Due to the absence of similar results in the specialized literature, this paper is likely to provide pertinent results that are instrumental toward a reliable design of FG porous curved beams in thermal environment.


Author(s):  
Nastaran Shahmansouri ◽  
Mohammad Mohammadi Aghdam ◽  
Kasra Bigdeli

The present study investigates static analyses of moderately thick FG plates. Using the First Order Shear Deformation Theory (FSDT), functionally graded plates subjected to transversely distributed loading with various boundary conditions are studied. Effective mechanical properties which vary from one surface of the plate to the other assumed to be defined by a power law form of distribution. Different ceramic-metal sets of materials are studied. Solution of the governing equations, including five equilibrium and eight constitutive equations, is obtained by the Extended Kantorovich Method (EKM). The system of thirteen Partial Differential Equations (PDEs) in terms of displacements, rotations, force and moment resultants are considered as multiplications of separable function of independent variables x and y. Then by successful utilization of the EKM these equations are converted to a double set of ODE systems in terms of x and y. The obtained ODE systems are then solved iteratively until final convergence is achieved. Closed form solution is presented for these ODE sets. It is shown that the method is very stable and provides fast convergence and highly accurate predictions for both thin and moderately thick plates. Comparison of the normal stresses at various points of rectangular plates and deflection of mid-point of the plate are presented and compared with available data in the literature. The effects of the volume fraction exponent n on the behavior of the normalized deflection, moment resultants and stresses of FG plates are also studied. To validate data for analysis fully clamped FG plates, another analysis was carried out using finite element code ANSYS. Close agreement is observed between predictions of the EKM and ANSYS.


Sign in / Sign up

Export Citation Format

Share Document