An Energetic Criterion for Dynamic Instability of Structures Under Arbitrary Excitations

2015 ◽  
Vol 15 (02) ◽  
pp. 1450043 ◽  
Author(s):  
Jun Xu ◽  
Jie Li

An energetic criterion for identifying the global dynamic instability of structures subjected to any kind of excitations is proposed in the paper. The concept of dynamic stability for structures is firstly interpreted and distinguished from the stability concept in the Lyapunov sense. It is demonstrated that the dynamic instability depends not only on the properties of the structure, but also relates to the change of external excitations on the structure, which distinguishes the essence of dynamic instability from the pseudo static stiffness criterion. This background leads to a novel energetic criterion with which the first passage of the variation of intrinsic energy over the input energy manifests the dynamic instability of structures. The proposed criterion has been extensively tested and verified in the numerical examples, with its advantages clearly illustrated.

Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Haifa Bin Jebreen ◽  
Fairouz Tchier

Herein, an efficient algorithm is proposed to solve a one-dimensional hyperbolic partial differential equation. To reach an approximate solution, we employ the θ-weighted scheme to discretize the time interval into a finite number of time steps. In each step, we have a linear ordinary differential equation. Applying the Galerkin method based on interpolating scaling functions, we can solve this ODE. Therefore, in each time step, the solution can be found as a continuous function. Stability, consistency, and convergence of the proposed method are investigated. Several numerical examples are devoted to show the accuracy and efficiency of the method and guarantee the validity of the stability, consistency, and convergence analysis.


2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


1997 ◽  
Vol 41 (03) ◽  
pp. 210-223 ◽  
Author(s):  
K. J. Spyrou

The loss of stability of the horizontal-plane periodic motion of a steered ship in waves is investigated. In earlier reports we referred to the possibility of a broaching mechanism that will be intrinsic to the periodic mode, whereby there will exist no need for the ship to go through the surf-riding stage. However, about this point the discussion was essentially conjectural. In order to provide substance we present here a theoretical approach that is organized in two stages: Initially, we demonstrate the existence of a mechanism of parametric instability of yaw on the basis of a rudimentary, single-degree model of maneuvering motion in waves. Then, with a more elaborate model, we identify the underlying nonlinear phenomena that govern the large-amplitude horizontal ship motions, considering the ship as a multi-degree, nonlinear oscillator. Our analysis brings to light a very specific sequence of phenomena leading to cumulative broaching that involves a change in the stability of the ordinary periodic motion on the horizontal plane, a transition towards subharmonic response and, ultimately, a sudden jump to resonance. Possible means for controlling the onset of such undesirable behavior are also investigated.


2009 ◽  
Vol 21 (12) ◽  
pp. 3444-3459 ◽  
Author(s):  
Wei Lin

Without assuming the positivity of the amplification functions, we prove some M-matrix criteria for the [Formula: see text]-global asymptotic stability of periodic Cohen-Grossberg neural networks with delays. By an extension of the Lyapunov method, we are able to include neural systems with multiple nonnegative periodic solutions and nonexponential convergence rate in our model and also include the Lotka-Volterra system, an important prototype of competitive neural networks, as a special case. The stability criteria for autonomous systems then follow as a corollary. Two numerical examples are provided to show that the limiting equilibrium or periodic solution need not be positive.


Author(s):  
Mikołaj Busłowicz ◽  
Andrzej Ruszewski

Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systemsAsymptotic stability of models of 2D continuous-discrete linear systems is considered. Computer methods for investigation of the asymptotic stability of the Roesser type model are given. The methods require computation of eigenvalue-loci of complex matrices or evaluation of complex functions. The effectiveness of the stability tests is demonstrated on numerical examples.


1991 ◽  
Vol 21 (2) ◽  
pp. 199-221 ◽  
Author(s):  
David C. M. Dickson ◽  
Howard R. Waters

AbstractIn this paper we present an algorithm for the approximate calculation of finite time survival probabilities for the classical risk model. We also show how this algorithm can be applied to the calculation of infinite time survival probabilities. Numerical examples are given and the stability of the algorithms is discussed.


2017 ◽  
Vol 36 (2) ◽  
pp. 379-398
Author(s):  
Xu-Guang Li ◽  
Silviu-Iulian Niculescu ◽  
Arben Çela

AbstractIn this article, we study the stability of linear systems with multiple (incommensurate) delays, by extending a recently proposed frequency-sweeping approach. First, we consider the case where only one delay parameter is free while the others are fixed. The complete stability w.r.t. the free delay parameter can be systematically investigated by proving an appropriate invariance property. Next, we propose an iterative frequency-sweeping approach to study the stability under any given multiple delays. Moreover, we may effectively analyse the asymptotic behaviour of the critical imaginary roots (if any) w.r.t. each delay parameter, which provides a possibility for stabilizing the system through adjusting the delay parameters. The approach is simple (graphical test) and can be applied systematically to the stability analysis of linear systems including multiple delays. A deeper discussion on its implementation is also proposed. Finally, various numerical examples complete the presentation.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 187
Author(s):  
Yaxin Hou ◽  
Cao Wen ◽  
Hong Li ◽  
Yang Liu ◽  
Zhichao Fang ◽  
...  

In this article, some high-order time discrete schemes with an H 1 -Galerkin mixed finite element (MFE) method are studied to numerically solve a nonlinear distributed-order sub-diffusion model. Among the considered techniques, the interpolation approximation combined with second-order σ schemes in time is used to approximate the distributed order derivative. The stability and convergence of the scheme are discussed. Some numerical examples are provided to indicate the feasibility and efficiency of our schemes.


2005 ◽  
Vol 42 (01) ◽  
pp. 199-222 ◽  
Author(s):  
Yutaka Sakuma ◽  
Masakiyo Miyazawa

We consider a two-node Jackson network in which the buffer of node 1 is truncated. Our interest is in the limit of the tail decay rate of the queue-length distribution of node 2 when the buffer size of node 1 goes to infinity, provided that the stability condition of the unlimited network is satisfied. We show that there can be three different cases for the limit. This generalizes some recent results obtained for the tandem Jackson network. Special cases and some numerical examples are also presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Yiheng Wei ◽  
Hamid Reza Karimi ◽  
Jinwen Pan ◽  
Qing Gao ◽  
Yong Wang

This paper is concerned with the problem of designing disturbance observer for fractional order systems, of which the disturbance is in time series expansion. The stability of a special observer with the selected nonlinear weighted function and transient dynamics function is rigorously analyzed for slowly varying disturbance. In addition, the result is also extended to estimate slope forms disturbance and higher order disturbance of fractional order systems. The efficacy of the proposed method is validated through numerical examples.


Sign in / Sign up

Export Citation Format

Share Document