Nonlinear Vibration of Size Dependent Microresonators with an Electrostatically Actuated Proof Mass

2018 ◽  
Vol 18 (04) ◽  
pp. 1850057 ◽  
Author(s):  
Ehsan Sharifinsab ◽  
Mahdi Mojahedi

In this paper, the dynamic and nonlinear vibration responses of a microresonator containing a microbridge with a proof mass located at its middle are studied. The proof mass of the microresonator is actuated by the electrostatic field in such a way that a direct voltage finds a certain equilibrium position and then be prompted to vibration under the alternative voltage. Due to the importance of the size dependency effect in analysis of the performance of microelectromechanical systems, the size dependent theory is used in the modeling of the microstructure. By adopting the modified couple stress theory and considering electrostatic actuation, the dynamic equation of motion is derived using the extended Hamilton’s principle. Further, with the approximation by Galerkin’s method, the governing equation for the static and oscillatory motion is reduced and the resultant equation is solved by analytical (multiple-scales) and numerical methods. In the analytical and numerical results, the effects of various parameters on the system response, including the midplane stretching and size dependent effects, and dependency of vibration response to initial conditions, are analyzed in detail.

Author(s):  
Masoud Rahaeifard ◽  
Mohammad Taghi Ahmadian ◽  
Keikhosrow Firoozbakhsh

This paper investigates the dynamic behavior of microcantilevers under suddenly applied DC voltage based on the modified couple stress theory. The cantilever is modeled based on the Euler–Bernoulli beam theory and equation of motion is derived using Hamilton’s principle. Both analytical and numerical methods are utilized to predict the dynamic behavior of the microbeam. Multiple scales method is used for analytical analysis and the numerical approach is based on a hybrid finite element/finite difference method. The results of the modified couple stress theory are compared with those from the literature as well as the results predicted by the classical theory. It is shown that the modified couple stress theory predicts size-dependent normalized dynamic behavior for the microbeam while according to the classical theory the normalized behavior of the microbeam is independent of its size. When the thickness of the beam is in order of its material length scale, the difference between the results given by the modified couple stress theory and those predicted by the classical theory is considerable. As the beam thickness increases, the results of the modified couple stress theory converge to those of the classical theory.


2019 ◽  
Vol 8 (1) ◽  
pp. 461-469 ◽  
Author(s):  
Xiumei Wang ◽  
Jihai Yuan ◽  
Haorui Zhai

Abstract In this research, nonlinear dynamics and characteristics of a micro–plate system under electrostatic forces on both sides are studied. A novel model, which takes micro-scale effect and damage effect into account, is established on the basis of the Talreja’s tensor valued internal state damage model and modified couple stress theory. According to Hamilton principle, the dynamic governing equations of the size-dependent micro–plate are derived by variational method and solved via Galerkin method and the fourth order Runge-Kutta method. The effects of damage variable and material length scale parameter on bifurcation and chaos of the micro–plate system are presented with numerical simulations using the bifurcation diagram, Poincare map. Results provide a theoretical basis for the design of dynamic stability of electrically actuated micro- structures.


Sign in / Sign up

Export Citation Format

Share Document