EXPERIENCE AND PRACTICE IN CARRYING A HEAVY, UNILATERAL LOAD: FOOTPRINT EVIDENCE

2017 ◽  
Vol 17 (01) ◽  
pp. 1750022 ◽  
Author(s):  
DAVID WEBB ◽  
SARA BRATSCH

Although a significant amount of research has examined the biomechanical effects of carrying a load on human walking, most has focussed on fore and aft loads, or evenly balanced loads. In addition, most research on human walking no longer considers footprint analysis, despite its ease of use and its effectiveness in studies of balance. However, one project, with a small number of subjects, suggested that people carrying a heavy load in one hand (e.g., a suitcase or toolbox) make two sorts of adjustments to the placement of their feet on the substrate. The first and most obvious change is a decrease in foot angle (in-toeing) on the unloaded side. This puts the anterior part of the foot further under the center of mass when carrying a load in the contralateral hand and has been amply documented in subsequent studies. The second and more subtle change is a decrease in step width, a practice which also moves the foot on the unloaded side closer to the center of mass. However, tests subsequent to the original study did not show a consistent or significant use of this technique. This discrepancy between original and subsequent results in step width can be explained by the level of expertise which various subjects have. Experience carrying heavy loads may be required for most subjects to develop ways of accommodating loads. For this project, subjects were tested under two conditions: carrying an empty canvas bag; carrying the same bag with 21% of their body weight in it. All subjects walked on paper runners, wearing paint-soaked socks to leave footprint trails. Subjects were asked to walk once with no weights followed by three more times with weights. They were then given 10–15[Formula: see text]min of practice with the weighted bag, then asked to repeat the protocol, for a total of eight trials (two unweighted and six weighted). Foot angle and step width were measured for all trials. Results show that practice does indeed make a difference in the use of a narrower step when carrying a heavy load. Specifically, the first three weighted trials show a decrease in step width that is nonsignificant, but the last three evince a significant reduction as compared to unweighted trials. In addition, lifetime experience carrying a heavy load led to more immediate changes in foot placement. We conclude that the initial study involved subjects who already had experience carrying a unilateral heavy load and that, as with other activities, mechanically more effective movements are acquired with greater experience and practice.

2021 ◽  
Vol 2 ◽  
Author(s):  
Tara Cornwell ◽  
Jane Woodward ◽  
Wendy Ochs ◽  
Keith E. Gordon

Gait rehabilitation following incomplete spinal cord injury (iSCI) often aims to enhance speed and stability. Concurrently increasing both may be difficult though as certain stabilization strategies will be compromised at faster speeds. To evaluate the interaction between speed and lateral stability, we examined individuals with (n = 12) and without (n = 12) iSCI as they performed straight walking and lateral maneuvers at Preferred and Fast treadmill speeds. To better detect the effects of speed on stability, we challenged lateral stability with a movement amplification force field. The Amplification field, created by a cable-driven robot, applied lateral forces to the pelvis that were proportional to the real-time lateral center of mass (COM) velocity. While we expected individuals to maintain stability during straight walking at the Fast speed in normal conditions, we hypothesized that both groups would be less stable in the Amplification field at the Fast speed compared to the Preferred. However, we found no effects of speed or the interaction between speed and field on straight-walking stability [Lyapunov exponent or lateral margin of stability (MOS)]. Across all trials at the Fast speed compared to the Preferred, there was greater step width variability (p = 0.031) and a stronger correlation between lateral COM state at midstance and the subsequent lateral foot placement. These observations suggest that increased stepping variability at faster speeds may be beneficial for COM control. We hypothesized that during lateral maneuvers in the Amplification field, MOS on the Initiation and Termination steps would be smaller at the Fast speed than at the Preferred. We found no effect of speed on the Initiation step MOS within either field (p > 0.350) or group (p > 0.200). The Termination step MOS decreased at the Fast speed within the group without iSCI (p < 0.001), indicating a trade-off between lateral stability and forward walking speed. Unexpectedly, participants took more steps and time to complete maneuvers at the Fast treadmill speed in the Amplification field. This strategy prioritizing stability over speed was especially evident in the group with iSCI. Overall, individuals with iSCI were able to maintain lateral stability when walking fast in balance-challenging conditions but may have employed more cautious maneuver strategies.


Author(s):  
Mohammadreza Mahaki ◽  
Sjoerd M Bruijn ◽  
Jaap H. van Dieën

It is still unclear how humans control mediolateral (ML) stability in walking and even more so for running. Here, foot placement adjustment as a main mechanism of active control of mediolateral stability was compared between walking and running. Moreover, to verify the role of foot placement as a means of active control of ML stability and associated metabolic costs in both modes of locomotion, this study investigated the effect of external lateral stabilization on foot placement control. Ten young adults participated in this study. Kinematic data of the trunk (T6) and feet (heels) as well as breath-by-breath oxygen consumption data were recorded during walking and running on a treadmill in normal and stabilized conditions. Coordination between ML trunk Center of Mass (CoM) state and subsequent ML foot placement, step width, and step width variability were assessed. Two-way repeated measures ANOVAs (either normal or SPM1d) were used to test for effects of walking vs. running and of normal vs. stabilized locomotion. We found a stronger association between ML trunk CoM state and foot placement in walking than in running from 90-100% of the gait cycle and also a higher step width variability in walking, but no significant differences in step width. The association between trunk CoM state and foot placement was significantly decreased by external lateral stabilization in walking and running, and this reduction was stronger in walking than in running from 75-100% of gait cycle. Surprisingly, energy cost significantly increased by external lateral stabilization, which was more pronounced in running than walking. We conclude that ML foot placement is coordinated to the CoM kinematic state to stabilize both walking and running. This coordination is more tight in walking than in running and appears not to contribute substantially to the energy costs of either mode of locomotion.


2012 ◽  
Vol 28 (5) ◽  
pp. 616-621 ◽  
Author(s):  
Noah J. Rosenblatt ◽  
Christopher P. Hurt ◽  
Mark D. Grabiner

Recent experimental findings support theoretical predictions that across walking conditions the motor system chooses foot placement to achieve a constant minimum “margin of stability” (MOSmin)—distance between the extrapolated center of mass and base of support. For example, while step width varies, similar average MOSmin exists between overground and treadmill walking and between overground and compliant/irregular surface walking. However, predictions regarding the invariance of MOSmin to step-by-step changes in foot placement cannot be verified by average values. The purpose of this study was to determine average changes in, and the sensitivity of MOSmin to varying step widths during two walking tasks. Eight young subjects walked on a dual-belt treadmill before and after receiving information that stepping on the physical gap between the belts causes no adverse effects. Information decreased step width by 17% (p = .01), whereas MOSmin was unaffected (p = .12). Regardless of information, subject-specific regressions between step-by-step values of step width and MOSmin explained, on average, only 5% of the shared variance (β = 0.11 ± 0.05). Thus, MOSmin appears to be insensitive to changing step width. Accordingly, during treadmill walking, step width is chosen to maintain MOSmin. If MOSmin remains insensitive to step width across other dynamic tasks, then assessing an individual’s stability while performing theses tasks could help describe the health of the motor system.


2021 ◽  
Author(s):  
Rina M. Magnani ◽  
Jaap H. van Dieën ◽  
Sjoerd M. Bruijn

AbstractVestibular information modulates muscle activity during gait, presumably to contribute stability, because noisy electrical vestibular stimulation perturbs gait stability. An important mechanism to stabilize gait in the mediolateral direction is to coordinate foot placement based on a sensory estimate of the trunk center of mass state, to which vestibular information appears to contribute. We, therefore expected that noisy vestibular stimulation would decrease the correlation between foot placement and trunk center of mass state. Moreover, as vestibular modulation of muscle activity during gait depends on step width, we expected stronger effects for narrow-base than normal walking, and smaller effects for wide-base walking. In eleven healthy subjects we measured the kinematics of the trunk (as a proxy of the center of mass), and feet, while they walked on a treadmill in six conditions, including three different step widths: control (preferred step width), narrow-base (steps smaller than hip width), and wide-base (with steps greater than hip width). The three conditions were conducted with and without a bipolar electrical stimulus, applied behind the ears (5 mA). Walking with EVS reduced gait stability but increased the foot placement to center of mass correlation in different step width conditions. The narrow-base walking was the most stable condition and showed a stronger correlation between foot placement and center of mass state. We argue that EVS destabilized gait, but that this was partially compensated for by tightened control over foot placement, which would require successful use of other than vestibular sensory inputs, to estimate center of mass movement.


Author(s):  
Marko Mihalec ◽  
Jingang Yi

This paper presents a simple inverted pendulum gait model to study walking under slip conditions. The model allows for both the horizontal and vertical movements of the center of mass during normal walking and walking gaits with foot slip. Stability of the system is analyzed using the concept of capturability. Considering foot placement as a control input, we obtain the stable regions which lead to stable gait. The size of those stable regions is used to evaluate the effect of the coefficient of friction and the slip reaction time on capturability. We also analyze the feasibility of recovery from slip gait in relation to the coefficient of friction and the reaction time. The results confirm the effectiveness of the model and the capturability developement.


2016 ◽  
Vol 13 (02) ◽  
pp. 1550041 ◽  
Author(s):  
Juan Alejandro Castano ◽  
Zhibin Li ◽  
Chengxu Zhou ◽  
Nikos Tsagarakis ◽  
Darwin Caldwell

This paper presents a novel online walking control that replans the gait pattern based on our proposed foot placement control using the actual center of mass (COM) state feedback. The analytic solution of foot placement is formulated based on the linear inverted pendulum model (LIPM) to recover the walking velocity and to reject external disturbances. The foot placement control predicts where and when to place the foothold in order to modulate the gait given the desired gait parameters. The zero moment point (ZMP) references and foot trajectories are replanned online according to the updated foothold prediction. Hence, only desired gait parameters are required instead of predefined or fixed gait patterns. Given the new ZMP references, the extended prediction self-adaptive control (EPSAC) approach to model predictive control (MPC) is used to minimize the ZMP response errors considering the acceleration constraints. Furthermore, to ensure smooth gait transitions, the conditions for the gait initiation and termination are also presented. The effectiveness of the presented gait control is validated by extensive disturbance rejection studies ranging from single mass simulation to a full body humanoid robot COMAN in a physics based simulator. The versatility is demonstrated by the control of reactive gaits as well as reactive stepping from standing posture. We present the data of the applied disturbances, the prediction of sagittal/lateral foot placements, the replanning of the foot/ZMP trajectories, and the COM responses.


efficiency. By measurements of total odour strength in a treatment plant the ED values pointed out the sludge press and dewatering process as the predominant odour sources of the plant. In the venting air from this position extremely high ED values were recorded. This air was led through a carbon filter for odour reduction. Olfactometric measurements at the filter revealed poor odour reducing efficiency. It was observed that odour compounds were not destroyed in the filter. They only restrained until the carbon became saturated, and thereafter evaporated into the outlet air contributing to the odour strength. The filter capacity was obviously too small for the heavy load. Attempts to reduce the odour strength before the filter did not succeed, until the air was led through a container filled with saturated lime slurry (pH = 12-14). The slurry was part of a precipitation process in the plant. Dispersion in the alkaline slurry extensively reduced the odour strength of the air, resulting in sufficient capacity of the carbon filter also when handling heavy loads of sewage sludge. Since then the carbon filter has worked well, within the limitation of such filters in general. Neither is it observed signs indicating reduced precipitation properties of the lime slurry. Measurements of total odour strength in combustion processes imply sampling challenges. Beside the chemical scrubber process, combustion of odorous air is the best odour reducing method. The disadvantage of this process is the high energy costs. Treatment at apropriate conditions, however, will destroy the odorous compounds extensively. Temperatures about 850 C and contact time up to 3 seconds are reported (2,3). Olfactometric measurements in combustion processes involve certain sampling problems caused by the temperature difference between inlet and outlet. The humidity of outlet air must also be taken into consideration. Problems may occur when hot outlet air is sampled at low temperatures. In most such cases sampling is impossible without special arrangements. Such conditions are present during odour measurements in fish meal plants with combustion as the odour reducing method. The largest problem turned out to be the temperature differences between outlet air (85-220 C) and outdoor temperatures (0-15 C), causing condensation. The dew point of the outlet air was calculated, and experiments were carried out with dilution of the outlet air to prevent condensation in the sampling bags. Condensation was prevented by diluting the outlet air 5-150 times with dry, purified N gas. Comparison of N -diluted and undiluted samples revealed large differences in ED value. In samples demanding a high degree of dilution to prevent condensation, the measured odour strength was up to 5 times higher than in the undiluted corresponding samples. Samples demanding less dilution showed less deviating results. 4. CONCLUSIONS In the attempt to minimize odour emission, olfactometric measurements of total odour strength give useful informations about the odour reducing efficiency of different processes as a function of parameters like dosage of chemicals in scrubbers, humidity and temperature in packed filters, flow rates, etc. Olfactometric measurements also point out the main odour sources of the plant. From a set of olfactometric data combined with other essential


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242215
Author(s):  
A. M. van Leeuwen ◽  
J. H. van Dieën ◽  
A. Daffertshofer ◽  
S. M. Bruijn

Step-by-step foot placement control, relative to the center of mass (CoM) kinematic state, is generally considered a dominant mechanism for maintenance of gait stability. By adequate (mediolateral) positioning of the center of pressure with respect to the CoM, the ground reaction force generates a moment that prevents falling. In healthy individuals, foot placement is complemented mainly by ankle moment control ensuring stability. To evaluate possible compensatory relationships between step-by-step foot placement and complementary ankle moments, we investigated the degree of (active) foot placement control during steady-state walking, and under either foot placement-, or ankle moment constraints. Thirty healthy participants walked on a treadmill, while full-body kinematics, ground reaction forces and EMG activities were recorded. As a replication of earlier findings, we first showed step-by-step foot placement is associated with preceding CoM state and hip ab-/adductor activity during steady-state walking. Tight control of foot placement appears to be important at normal walking speed because there was a limited change in the degree of foot placement control despite the presence of a foot placement constraint. At slow speed, the degree of foot placement control decreased substantially, suggesting that tight control of foot placement is less essential when walking slowly. Step-by-step foot placement control was not tightened to compensate for constrained ankle moments. Instead compensation was achieved through increases in step width and stride frequency.


2019 ◽  
Author(s):  
Mohammadreza Mahaki ◽  
Sjoerd M Bruijn ◽  
Jaap H. van Dieën

It is still unclear how humans control mediolateral (ML) stability in walking and even more so for running. Here, foot placement strategy as a main mechanism to control ML stability was compared between walking and running. Moreover, to verify the role of foot placement as a means to control ML stability in both modes of locomotion, this study investigated the effect of external lateral stabilization on foot placement control. Ten young adults participated in this study. Kinematic data of the trunk (T6) and feet were recorded during walking and running on a treadmill in normal and stabilized conditions. Correlation between ML trunk CoM state and subsequent ML foot placement, step width, and step width variability were assessed. Paired t-tests (either SPM1d or normal) were used to compare aforementioned parameters between normal walking and running. Two-way repeated measures ANOVAs (either SPM1d or normal) were used to test for effects of walking vs. running and of normal vs. stabilized condition. We found a stronger correlation between ML trunk CoM state and ML foot placement and significantly higher step width and step width variability in walking than in running. The correlation between ML trunk CoM state and ML foot placement, step width, and step width variability were significantly decreased by external lateral stabilization in walking and running, and this reduction was stronger in walking than in running. We conclude that ML foot placement is coordinated to ML trunk CoM state to stabilize both walking and running and this coordination is stronger in walking than in running.


Sign in / Sign up

Export Citation Format

Share Document