MAGNETOPHORETIC CIRCUIT BIOCOMPATIBILITY

2020 ◽  
Vol 20 (07) ◽  
pp. 2050050
Author(s):  
ROOZBEH ABEDINI-NASSAB

Recently, we introduced magnetophoretic circuits, composed of overlaid magnetic and metallic layers, as a novel single-cell analysis (SCA) tool. We showed the ability of these circuits in organizing large single-particle and particle-pair arrays. Assembling the cells in microarrays is performed with the ultimate goal of running temporal phenotypic analyses. However, for long-term studies, a suitable microenvironment for the cells to normally grow and differentiate is needed. Towards this goal, in this study, we run required biocompatibility tests, based on which we make the magnetophoretic-based microchip a suitable home for the cells to grow. The results confirm the ability of these chips in cell handling and show no unwanted cell behavior alteration due to the applied shear stress on them, the magnetic labeling, or the microenvironment. After this achievement, this tool would be ready for running important single-cell studies in oncology, virology, and medicine.

2019 ◽  
Author(s):  
Wu Liu ◽  
Mehmet U. Caglar ◽  
Zhangming Mao ◽  
Andrew Woodman ◽  
Jamie J. Arnold ◽  
...  

SUMMARYDevelopment of antiviral therapeutics emphasizes minimization of the effective dose and maximization of the toxic dose, first in cell culture and later in animal models. Long-term success of an antiviral therapeutic is determined not only by its efficacy but also by the duration of time required for drug-resistance to evolve. We have developed a microfluidic device comprised of ~6000 wells, with each well containing a microstructure to capture single cells. We have used this device to characterize enterovirus inhibitors with distinct mechanisms of action. In contrast to population methods, single-cell analysis reveals that each class of inhibitor interferes with the viral infection cycle in a manner that can be distinguished by principal component analysis. Single-cell analysis of antiviral candidates reveals not only efficacy but also properties of the members of the viral population most sensitive to the drug, the stage of the lifecycle most affected by the drug, and perhaps even if the drug targets an interaction of the virus with its host.


Author(s):  
Shih-Hui Chao ◽  
Tim J. Strovas ◽  
Ting-She M. Wang ◽  
Kendan A. Jones-Isaac ◽  
Susan L. Fink ◽  
...  

Real-time single cell analysis is necessary to understand dynamic cellular functions in time and space. Such analyses require the simultaneous measurement of multiple variables in real-time, due to heterogeneity in cellular populations. We report the application of using a micro-environmental chamber on an automatic laser scanning confocal microscope to observe murine macrophage cells in incubation conditions for more than 18 hours. The motorized stage of the microscope was programmed to scan through pre-defined monitoring locations to increase the observation throughput. The acquired images were post-processed to extract the information of each cell. In contrast to current single-cell technologies, such as fluorescence-activated cell sorter (FACS) based systems, the reported architecture records the history of the physiological responses of individual cells.


PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e93466 ◽  
Author(s):  
Jean-Bernard Nobs ◽  
Sebastian J. Maerkl

Lab on a Chip ◽  
2014 ◽  
Vol 14 (13) ◽  
pp. 2161-2167 ◽  
Author(s):  
Jonathan Avesar ◽  
Tom Ben Arye ◽  
Shulamit Levenberg

This review details the frontier microfluidic platforms for single cell analysis, highlighting technological improvements and cell analysis capabilities.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4140
Author(s):  
Amaro Torres-Simón ◽  
María Henar Marino ◽  
Clara Gómez-Cruz ◽  
Marina Cañadas ◽  
Miguel Marco ◽  
...  

Developing more efficient methods for antibiotic susceptibility testing is a pressing issue in novel drug development as bacterial resistance to antibiotics becomes increasingly common. Microfluidic devices have been demonstrated to be powerful platforms that allow researchers to perform multiplexed antibiotic testing. However, the level of multiplexing within microdevices is limited, evidencing the need of creating simple, low-cost and high-resolution imaging systems that can be integrated in antibiotic development pipelines. This paper describes the design and development of an epifluorescence inverted microscope that enables long-term monitoring of bacteria inside multiplexed microfluidic devices. The goal of this work is to provide a simple microscope powerful enough to allow single-cell analysis of bacteria at a reduced cost. This facilitates increasing the number of microscopes that are simultaneously used for antibiotic testing. We prove that the designed system is able to accurately detect fluorescent beads of 100 nm, demonstrating comparable features to high-end commercial microscopes and effectively achieving the resolution required for single-cell analysis of bacteria. The proposed microscope could thus increase the efficiency in antibiotic testing while reducing cost, size, weight, and power requirements, contributing to the successful development of new antibiotic drugs.


The Analyst ◽  
2020 ◽  
Vol 145 (14) ◽  
pp. 4852-4859 ◽  
Author(s):  
Jing Guo ◽  
Alberto Sesena Rubfiaro ◽  
Yanhao Lai ◽  
Joseph Moscoso ◽  
Feng Chen ◽  
...  

SERS-active flexible nanopipettes can be used to conduct long-term reliable intracellular single-cell analysis.


2020 ◽  
Vol 6 (22) ◽  
pp. eaba6712 ◽  
Author(s):  
A. Isozaki ◽  
Y. Nakagawa ◽  
M. H. Loo ◽  
Y. Shibata ◽  
N. Tanaka ◽  
...  

Droplet microfluidics has become a powerful tool in precision medicine, green biotechnology, and cell therapy for single-cell analysis and selection by virtue of its ability to effectively confine cells. However, there remains a fundamental trade-off between droplet volume and sorting throughput, limiting the advantages of droplet microfluidics to small droplets (<10 pl) that are incompatible with long-term maintenance and growth of most cells. We present a sequentially addressable dielectrophoretic array (SADA) sorter to overcome this problem. The SADA sorter uses an on-chip array of electrodes activated and deactivated in a sequence synchronized to the speed and position of a passing target droplet to deliver an accumulated dielectrophoretic force and gently pull it in the direction of sorting in a high-speed flow. We use it to demonstrate large-droplet sorting with ~20-fold higher throughputs than conventional techniques and apply it to long-term single-cell analysis of Saccharomyces cerevisiae based on their growth rate.


PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30542 ◽  
Author(s):  
Jesús Ciriza ◽  
Dominique Hall ◽  
Alison Lu ◽  
Joseph Robert De Sena ◽  
Mufadhal Al-Kuhlani ◽  
...  

Author(s):  
Alexander Lind ◽  
Falastin Salami ◽  
Anne‐Marie Landtblom ◽  
Lars Palm ◽  
Åke Lernmark ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document