A JUSTIFICATION OF THE REISSNER–MINDLIN PLATE THEORY THROUGH VARIATIONAL CONVERGENCE

2007 ◽  
Vol 05 (02) ◽  
pp. 165-182 ◽  
Author(s):  
ROBERTO PARONI ◽  
PAOLO PODIO-GUIDUGLI ◽  
GIUSEPPE TOMASSETTI

We provide a justification of the Reissner–Mindlin plate theory, using linear three-dimensional elasticity as framework and Γ-convergence as technical tool. Essential to our developments is the selection of a transversely isotropic material class whose stored energy depends on (first and) second gradients of the displacement field. Our choices of a candidate Γ-limit and a scaling law of the basic energy functional in terms of a thinness parameter are guided by mechanical and formal arguments that our variational convergence theorem is meant to validate mathematically.

Author(s):  
Shilei Han ◽  
Olivier A. Bauchau

In structural analysis, many components are approximated as plates. More often that not, classical plate theories, such as Kirchhoff or Reissner-Mindlin plate theories, form the basis of the analytical developments. The advantage of these approaches is that they leads to simple kinematic descriptions of the problem: the plate’s normal material line is assumed to remain straight and its displacement field is fully defined by three displacement and two rotation components. While such approach is capable of capturing the kinetic energy of the system accurately, it cannot represent the strain energy adequately. For instance, it is well known from three-dimensional elasticity theory that the normal material line will warp under load for laminated composite plates, leading to three-dimensional deformations that generate complex stress states. To overcome this problem, several high-order, refined plate theories have been proposed. While these approaches work well for some cases, they often lead to inefficient formulations because they introduce numerous additional variables. This paper presents a different approach to the problem: based on a finite element semi-discretization of the normal material line, plate equations are derived from three-dimensional elasticity using a rigorous dimensional reduction procedure.


2006 ◽  
Vol 343 (6) ◽  
pp. 437-440 ◽  
Author(s):  
Roberto Paroni ◽  
Paolo Podio-Guidugli ◽  
Giuseppe Tomassetti

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Peng Li ◽  
Feng Jin ◽  
Weiqiu Chen ◽  
Jiashi Yang

The effect of imperfect interface on the coupled extensional and flexural motions in a two-layer elastic plate is investigated from views of theoretical analysis and numerical simulations. A set of full two-dimensional equations is obtained based on Mindlin plate theory and shear-slip model, which concerns the interface elasticity and tangential discontinuous displacements across the bonding imperfect interface. Some numerical examples are processed, including the propagation of straight-crested waves in an unbounded plate, the buckling of a finite plate, as well as the deflection of a finite plate under uniform load. It is revealed that the bending-evanescent wave in the composites with a perfect interface eventually cuts-on to a propagating shear-like wave with cutoff frequency when the two sublayers imperfectly bonded. The similar phenomenon has been verified once again for coupled face-shear and thickness-shear waves. It also has been pointed out that the interfacial parameter has a great influence on the performance of static buckling, in which the outcome can be reduced to classical buckling load of a simply supported plate when the interface is perfect.


2005 ◽  
Vol 72 (1) ◽  
pp. 1-9 ◽  
Author(s):  
O. G. McGee ◽  
J. W. Kim ◽  
A. W. Leissa

Transverse displacement and rotation eigenfunctions for the bending of moderately thick plates are derived for the Mindlin plate theory so as to satisfy exactly the differential equations of equilibrium and the boundary conditions along two intersecting straight edges. These eigenfunctions are in some ways similar to those derived by Max Williams for thin plates a half century ago. The eigenfunctions are called “corner functions,” for they represent the state of stress currently in sharp corners, demonstrating the singularities that arise there for larger angles. The corner functions, together with others, may be used with energy approaches to obtain accurate results for global behavior of moderately thick plates, such as static deflections, free vibration frequencies, buckling loads, and mode shapes. Comparisons of Mindlin corner functions with those of thin-plate theory are made in this work, and remarkable differences are found.


Sign in / Sign up

Export Citation Format

Share Document