scholarly journals STRINGS, WAVES, DRUMS: SPECTRA AND INVERSE PROBLEMS

2009 ◽  
Vol 07 (02) ◽  
pp. 131-183
Author(s):  
RICHARD BEALS ◽  
PETER C. GREINER

This survey treats a number of interconnected topics related in one way or another to the famous paper of Mark Kac, "Can one hear the shape of a drum?": wave motion, classical and quantum inverse problems, integrable systems, and the relations between spectra and geometry. We sketch the history and some of the principal developments from the vibrating string to quantum inverse problems, the KdV equation and integrable systems, spectral geometry and the index problem.

2002 ◽  
Vol 44 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Partha Guha

AbstractIn this paper we consider a projective connection as defined by the nth-order Adler-Gelfand-Dikii (AGD) operator on the circle. It is well-known that the Korteweg-de Vries (KdV) equation is the archetypal example of a scalar Lax equation defined by a Lax pair of scalar nth-order differential (AGD) operators. In this paper we derive (formally) the KdV equation as an evolution equation of the AGD operator (at least for n ≤ 4) under the action of Vect(S1). The solutions of the AGD operator define an immersion R → RPn−1 in homogeneous coordinates. In this paper we derive the Schwarzian KdV equation as an evolution of the solution curve associated with Δ(n), for n ≤ 4.


Author(s):  
S. G. Rajeev

Some exceptional situations in fluid mechanics can be modeled by equations that are analytically solvable. The most famous example is the Korteweg–de Vries (KdV) equation for shallow water waves in a channel. The exact soliton solution of this equation is derived. The Lax pair formalism for solving the general initial value problem is outlined. Two hamiltonian formalisms for the KdV equation (Fadeev–Zakharov and Magri) are explained. Then a short review of the geometry of curves (Frenet–Serret equations) is given. They are used to derive a remarkably simple equation for the propagation of a kink along a vortex filament. This equation of Hasimoto has surprising connections to the nonlinear Schrödinger equation and to the Heisenberg model of ferromagnetism. An exact soliton solution is found.


Water Waves ◽  
2021 ◽  
Author(s):  
Maria Bjørnestad ◽  
Henrik Kalisch ◽  
Malek Abid ◽  
Christian Kharif ◽  
Mats Brun

AbstractIt is well known that weak hydraulic jumps and bores develop a growing number of surface oscillations behind the bore front. Defining the bore strength as the ratio of the head of the undular bore to the undisturbed depth, it was found in the classic work of Favre (Ondes de Translation. Dunod, Paris, 1935) that the regime of laminar flow is demarcated from the regime of partially turbulent flows by a sharply defined value 0.281. This critical bore strength is characterized by the eventual breaking of the leading wave of the bore front. Compared to the flow depth in the wave flume, the waves developing behind the bore front are long and of small amplitude, and it can be shown that the situation can be described approximately using the well known Kortweg–de Vries equation. In the present contribution, it is shown that if a shear flow is incorporated into the KdV equation, and a kinematic breaking criterion is used to test whether the waves are spilling, then the critical bore strength can be found theoretically within an error of less than ten percent.


2016 ◽  
Vol 71 (8) ◽  
pp. 735-740
Author(s):  
Zheng-Yi Ma ◽  
Jin-Xi Fei

AbstractFrom the known Lax pair of the Korteweg–de Vries (KdV) equation, the Lie symmetry group method is successfully applied to find exact invariant solutions for the KdV equation with nonlocal symmetries by introducing two suitable auxiliary variables. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to the hyperbolic and Jacobi elliptic functions are derived. Figures show the physical interaction between the cnoidal waves and a solitary wave.


1979 ◽  
Vol 24 (4) ◽  
pp. 97-100 ◽  
Author(s):  
F. Calogero ◽  
M. A. Olshanetsky ◽  
A. M. Perelomov

2008 ◽  
Vol 25 (7) ◽  
pp. 2335-2338 ◽  
Author(s):  
Wang Hui-Ping ◽  
Wang Yu-Shun ◽  
Hu Ying-Ying

Sign in / Sign up

Export Citation Format

Share Document