scholarly journals Wave Breaking in Undular Bores with Shear Flows

Water Waves ◽  
2021 ◽  
Author(s):  
Maria Bjørnestad ◽  
Henrik Kalisch ◽  
Malek Abid ◽  
Christian Kharif ◽  
Mats Brun

AbstractIt is well known that weak hydraulic jumps and bores develop a growing number of surface oscillations behind the bore front. Defining the bore strength as the ratio of the head of the undular bore to the undisturbed depth, it was found in the classic work of Favre (Ondes de Translation. Dunod, Paris, 1935) that the regime of laminar flow is demarcated from the regime of partially turbulent flows by a sharply defined value 0.281. This critical bore strength is characterized by the eventual breaking of the leading wave of the bore front. Compared to the flow depth in the wave flume, the waves developing behind the bore front are long and of small amplitude, and it can be shown that the situation can be described approximately using the well known Kortweg–de Vries equation. In the present contribution, it is shown that if a shear flow is incorporated into the KdV equation, and a kinematic breaking criterion is used to test whether the waves are spilling, then the critical bore strength can be found theoretically within an error of less than ten percent.

2016 ◽  
Vol 71 (8) ◽  
pp. 735-740
Author(s):  
Zheng-Yi Ma ◽  
Jin-Xi Fei

AbstractFrom the known Lax pair of the Korteweg–de Vries (KdV) equation, the Lie symmetry group method is successfully applied to find exact invariant solutions for the KdV equation with nonlocal symmetries by introducing two suitable auxiliary variables. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to the hyperbolic and Jacobi elliptic functions are derived. Figures show the physical interaction between the cnoidal waves and a solitary wave.


2019 ◽  
Vol 875 ◽  
pp. 1145-1174 ◽  
Author(s):  
T. Congy ◽  
G. A. El ◽  
M. A. Hoefer

A new type of wave–mean flow interaction is identified and studied in which a small-amplitude, linear, dispersive modulated wave propagates through an evolving, nonlinear, large-scale fluid state such as an expansion (rarefaction) wave or a dispersive shock wave (undular bore). The Korteweg–de Vries (KdV) equation is considered as a prototypical example of dynamic wavepacket–mean flow interaction. Modulation equations are derived for the coupling between linear wave modulations and a nonlinear mean flow. These equations admit a particular class of solutions that describe the transmission or trapping of a linear wavepacket by an unsteady hydrodynamic state. Two adiabatic invariants of motion are identified that determine the transmission, trapping conditions and show that wavepackets incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves exhibit so-called hydrodynamic reciprocity recently described in Maiden et al. (Phys. Rev. Lett., vol. 120, 2018, 144101) in the context of hydrodynamic soliton tunnelling. The modulation theory results are in excellent agreement with direct numerical simulations of full KdV dynamics. The integrability of the KdV equation is not invoked so these results can be extended to other nonlinear dispersive fluid mechanic models.


2017 ◽  
Vol 8 (1) ◽  
pp. 57-75 ◽  
Author(s):  
Mats K. Brun ◽  
Henrik Kalisch

2014 ◽  
Vol 488-489 ◽  
pp. 1289-1294
Author(s):  
Lu Jing ◽  
Peng Jun Zheng

In this paper, a modified car-following model is proposed, in which, the weather and road conditions are taken into account. The stability condition of the model is obtained by using the control theory method. We investigated the property of the model using linear and nonlinear analyses. The Kortewegde Vries equation near the neutral stability line and the modified Kortewegde Vries equation around the critical point are derived by applying the reductive perturbation method. The traffic jam could be thus described by the KdV soliton and the kinkanti-kink soliton for the KdV equation and mKdV equation, respectively. Numerical simulations are carried out to verify the model, and good results are obtained with the new model.


1998 ◽  
Vol 13 (18) ◽  
pp. 3203-3213 ◽  
Author(s):  
B. BAGCHI ◽  
J. BECKERS ◽  
N. DEBERGH

Exploiting the Lax form of the Korteweg-de Vries equation, we determine the whole set of its symmetry operators and relate them to conserved quantities. We also study a KdV supersymmetric version and put in evidence its even (bosonic) and odd (fermionic) symmetries. We then get the Lie superalgebra characterizing this supersymmetric nonlinear equation.


Author(s):  
Yvan Martel ◽  
Frank Merle

We review recent nonlinear partial differential equation techniques developed to address questions concerning solitons for the quartic generalized Korteweg—de Vries equation (gKdV) and other generalizations of the KdV equation. We draw a comparison between results obtained in this way and some elements of the classical integrability theory for the original KdV equation, which serve as a reference for soliton and multi-soliton problems. First, known results on stability and asymptotic stability of solitons for gKdV equations are reviewed from several different sources. Second, we consider the problem of the interaction of two solitons for the quartic gKdV equation. We focus on recent results and techniques from a previous paper by the present authors concerning the interaction of two almost-equal solitons.


2019 ◽  
Vol 47 (1) ◽  
pp. 38-40
Author(s):  
E.G. Didenkulova ◽  
A.V. Slunyaev ◽  
E.N. Pelinovsky

The dynamics of wave ensembles in shallow water is studied within the framework of the nonlinear dispersive Korteweg – de Vries (KdV) equation by numerical simulation. Bimodal wave systems whose energy is distributed over two spectral domains are considered: the “additional” lobe which corresponds to the system of longer or shorter waves is added to the “main” spectral peak. The concerned problem describes, for example, the interaction between wind waves and swell in shallow water. The case of the unimodal waves (considered in (Pelinovsky, Sergeeva, 2006) is used as the reference. The limitations of the implied assumptions and the relationship of the idealized model to the realistic conditions in the ocean were discussed in the recent paper (Wang et al, 2018). Based on the detailed consideration of the 6 simulated cases, the following general conclusions may be formulated. The transition from the initial state to the quasi-equilibrium one is accompanied by strong variations of the wave characteristics, when the waves exhibit the most extreme features. In particular, the wave kurtosis grows suddenly and the abnormal heavy tails in the wave amplitude probability distributions appear. These processes are observed in all the cases of the bimodal spectra and are quite similar to the single-mode regime. The coexistence of a long-wave system smoothens the rapid oscillations of the wave extremes and kurtosis which take place during the transition stage. The presence of a short-wave system makes the waves on average more symmetric. Skewness attains the minimum value compared to the other cases. The co-existence of shorter waves practically does not change the wave kurtosis or the probability of the wave heights. In contrast, the presence of a long-wave system makes the waves more asymmetric and more extreme. The probability of large waves increases in the bimodal systems with a low-frequency component. The initial wave spectrum expands as a result of the wave interaction and tends to a quasistationary state. One may anticipate that the formulated conclusions are applicable beyond the limits of the Korteweg-de Vries equation to other kindred frameworks and corresponding phenomena. This work was supported by the Russian Science Foundation (project No. 18-77-00063).


Author(s):  
Thomas J. Bridges

A new perspective on the emergence of the Korteweg–de Vries (KdV) equation is presented. The conventional view is that the KdV equation arises as a model when the dispersion relation of the linearization of some system of partial differential equations has the appropriate form, and the nonlinearity is quadratic. The assumptions of this paper imply that the usual spectral and nonlinearity assumptions for the derivation of the KdV equation are met. In addition to a new mechanism, the theory shows that the emergence of the KdV equation always takes a universal form, where the coefficients in the KdV equation are completely determined from the properties of the background state—even an apparently trivial background state. Moreover, the mechanism for the emergence of the KdV equation is simplified, reducing it to a single condition. Well-known examples, such as the KdV equation in shallow-water hydrodynamics and in the emergence of dark solitary waves, are predicted by the new theory for emergence of KdV.


Sign in / Sign up

Export Citation Format

Share Document