scholarly journals Cell-filtering-based multi-scale Shannon–Cosine wavelet denoising method for locust slice images

Author(s):  
Shenghan Mei ◽  
Xiaochun Liu ◽  
Shuli Mei

The locust slice images have all the features such as strong self-similarity, piecewise smoothness and nonlinear texture structure. Multi-scale interpolation operator is an effective tool to describe such structures, but it cannot overcome the influence of noise on images. Therefore, this research designed the Shannon–Cosine wavelet which possesses all the excellent properties such as interpolation, smoothness, compact support and normalization, then constructing multi-scale wavelet interpolative operator, the operator can be applied to decompose and reconstruct the images adaptively. Combining the operator with the local filter operator (mean and median), a multi-scale Shannon–Cosine wavelet denoising algorithm based on cell filtering is constructed in this research. The algorithm overcomes the disadvantages of multi-scale interpolation wavelet, which is only suitable for describing smooth signals, and realizes multi-scale noise reduction of locust slice images. The experimental results show that the proposed method can keep all kinds of texture structures in the slice image of locust. In the experiments, the locust slice images with mixture noise of Gaussian and salt–pepper are taken as examples to compare the performances of the proposed method and other typical denoising methods. The experimental results show that the Peak Signal-To-Noise Ratio (PSNR) of the denoised images obtained by the proposed method is greater 27.3%, 24.6%, 2.94%, 22.9% than Weiner filter, wavelet transform method, median and average filtering, respectively; and the Structural Similarity Index (SSIM) for measuring image quality is greater 31.1%, 31.3%, 15.5%, 10.2% than other four methods, respectively. As the variance of Gaussian white noise increases from 0.02 to 0.1, the values of PSNR and SSIM obtained by the proposed method only decrease by 11.94% and 13.33%, respectively, which are much less than other 4 methods. This shows that the proposed method possesses stronger adaptability.

Author(s):  
Cuizhen Wang ◽  
Zhenxue Chen ◽  
Yan Wang ◽  
Zhifeng Wang

Three-dimensional reconstruction of teeth plays an important role in the operation of living dental implants. However, the tissue around teeth and the noise generated in the process of image acquisition bring a serious impact on the reconstruction results, which must be reduced or eliminated. Combined with the advantages of wavelet transform and bilateral filtering, this paper proposes an image denoising method based on the above methods. The method proposed in this paper not only removes the noise but also preserves the image edge details. The noise in high frequency subbands is denoised using a locally adaptive thresholding and the noise in low frequency subbands is filtered by the bilateral filtering. Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and 3D reconstruction using the iso-surface extraction method are used to evaluate the denoising effect. The experimental results show that the proposed method is better than the wavelet denoising and bilateral filtering, and the reconstruction results meet the requirements of clinical diagnosis.


2016 ◽  
Vol 16 (5) ◽  
pp. 109-118
Author(s):  
Xiaolu Xie

Abstract In this paper we propose a new approach for image denoising based on the combination of PM model, isotropic diffusion model, and TV model. To emphasize the superiority of the proposed model, we have used the Structural Similarity Index Measure (SSIM) and Peak Signal to Noise Ratio (PSNR) as the subjective criterion. Numerical experiments with different images show that our algorithm has the highest PSNR and SS1M, as well as the best visual quality among the six algorithms. Experimental results confirm the high performance of the proposed model compared with some well-known algorithms. In a word, the new model outperforms the mentioned three well known algorithms in reducing the Gibbs-type artifacts, edges blurring, and the block effect, simultaneously.


2020 ◽  
Vol 12 (14) ◽  
pp. 2336 ◽  
Author(s):  
Shaobo Li ◽  
Jianhu Zhao ◽  
Hongmei Zhang ◽  
Zijun Bi ◽  
Siheng Qu

Due to the influence of equipment instability and surveying environment, scattering echoes and other factors, it is sometimes difficult to obtain high-quality sub-bottom profile (SBP) images by traditional denoising methods. In this paper, a novel SBP image denoising method is developed for obtaining underlying clean images based on a non-local low-rank framework. Firstly, to take advantage of the inherent layering structures of the SBP image, a direction image is obtained and used as a guidance image. Secondly, the robust guidance weight for accurately selecting the similar patches is given. A novel denoising method combining the weight and a non-local low-rank filtering framework is proposed. Thirdly, after discussing the filtering parameter settings, the proposed method is tested in actual measurements of sub-bottom, both in deep water and shallow water. Experimental results validate the excellent performance of the proposed method. Finally, the proposed method is verified and compared with other methods quantificationally based on the synthetic images and has achieved the total average peak signal-to-noise ratio (PSNR) of 21.77 and structural similarity index (SSIM) of 0.573, which is far better than other methods.


2021 ◽  
Author(s):  
Mayank Kumar Singh ◽  
Indu Saini ◽  
Neetu Sood

Abstract Ultrasound in diagnostic imaging is well known for its safety and accessibility. But its efficiency for diagnosis is always limited by the presence of noise. So, in this study, a Log-Exponential shrinkage technique is presented for denoising of ultrasound images. A Combinational filter was designed for the removal of additive noise without losing any details. The speckle noise after homomorphic transformation follows Gaussian distribution and the conventional median estimator has very low accuracy for Gaussian distribution. The scale parameter calculated from the sub-band coefficients after homomorphic transformation was utilized to design the estimator. For shrinkage of wavelet coefficients, a multi-scale thresholding function was designed, with better flexibility. The proposed technique was tested for both medical and standard images. A significant improvement was observed in the estimation of speckle noise variance. For quantitative evaluation of the proposed technique with existing denoising methods, Mean Squared Error (MSE), Structural Similarity Index (SSIM), and Peak Signal to Noise Ratio (PSNR) were used. At the highest noise variance, the minimum improvement achieved by the proposed denoising technique in PSNR, SSIM, and MSE was 10.65%, 23.21%, and 30.46% respectively.


Emerging trends in the widespread use of technology has led to proliferation of images and videos acquired and distributed through electronic devices. There is an increasing need towards capturing high fidelity images and filtering of the concomitant noise inevitable in the capture, transmission and reception of the same. In this paper, we propose an OPSS (Optimized Patch based Self Similar) filter that exploits concurrently the photometric, geometric and graphical patch similarities of the image. This model recognizes similar patches to segregate the corrupted from the uncorrupted pixels in an image and improve the performance of denoising. Photometric patch similarity is established by using Non-Local Means Decision Based Unsymmetrical Trimmed Median (NLM-DBUTM) filter, which computes weights based on the reference patch. The geometrical patch similarity is done through the K-means clustering and graphically similar patches are identified through Ant Colony Optimization (ACO) technique. These “three similarities” based models have been taken advantage of and combined to arrive at a more comprehensive and effective denoising. The results obtained through the OPSS algorithm demonstrate improved efficiency in removing Gaussian and Impulse noise. Experimental results demonstrate that our proposed study achieves good performance with respect to other denoising algorithms being compared. Experimental results are based on performance measure (evaluation parameters) through Peak Signal to Noise Ratio (PSNR), Mean squared error (MSE) and Structural Similarity Index Measure (SSIM).


Author(s):  
Sreedhar Kollem ◽  
K. Ramalinga Reddy ◽  
D. Sreenivasa Rao

In real time applications, image denoising is a predominant task. This task makes adequate preparation for images looks prominent. But there are several denoising algorithms and every algorithm has its own distinctive attribute based upon different natural images. In this paper, we proposed a perspective that is modified parameter in S-Gradient Histogram Preservation denoising method. S-Gradient Histogram Preservation is a method to compute the structure gradient histogram from the noisy observation by taking different noise standard deviations of different images. The performance of this method is enumerated in terms of peak signal to noise ratio and structural similarity index of a particular image. In this paper, mainly focus on peak signal to noise ratio, structural similarity index, noise estimation and a measure of structure gradient histogram of a given image.


2020 ◽  
Vol 25 (2) ◽  
pp. 86-97
Author(s):  
Sandy Suryo Prayogo ◽  
Tubagus Maulana Kusuma

DVB merupakan standar transmisi televisi digital yang paling banyak digunakan saat ini. Unsur terpenting dari suatu proses transmisi adalah kualitas gambar dari video yang diterima setelah melalui proses transimisi tersebut. Banyak faktor yang dapat mempengaruhi kualitas dari suatu gambar, salah satunya adalah struktur frame dari video. Pada tulisan ini dilakukan pengujian sensitifitas video MPEG-4 berdasarkan struktur frame pada transmisi DVB-T. Pengujian dilakukan menggunakan simulasi matlab dan simulink. Digunakan juga ffmpeg untuk menyediakan format dan pengaturan video akan disimulasikan. Variabel yang diubah dari video adalah bitrate dan juga group-of-pictures (GOP), sedangkan variabel yang diubah dari transmisi DVB-T adalah signal-to-noise-ratio (SNR) pada kanal AWGN di antara pengirim (Tx) dan penerima (Rx). Hasil yang diperoleh dari percobaan berupa kualitas rata-rata gambar pada video yang diukur menggunakan metode pengukuran structural-similarity-index (SSIM). Dilakukan juga pengukuran terhadap jumlah bit-error-rate BER pada bitstream DVB-T. Percobaan yang dilakukan dapat menunjukkan seberapa besar sensitifitas bitrate dan GOP dari video pada transmisi DVB-T dengan kesimpulan semakin besar bitrate maka akan semakin buruk nilai kualitas gambarnya, dan semakin kecil nilai GOP maka akan semakin baik nilai kualitasnya. Penilitian diharapkan dapat dikembangkan menggunakan deep learning untuk memperoleh frame struktur yang tepat di kondisi-kondisi tertentu dalam proses transmisi televisi digital.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1269
Author(s):  
Jiabin Luo ◽  
Wentai Lei ◽  
Feifei Hou ◽  
Chenghao Wang ◽  
Qiang Ren ◽  
...  

Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due to the influence of the environment and equipment hardware, which complicates the interpretability of the useful information. Many methods have been proposed to eliminate or suppress the random noise. However, the existing methods have an unsatisfactory denoising effect when the image is severely contaminated by random noise. This paper proposes a multi-scale convolutional autoencoder (MCAE) to denoise GPR data. At the same time, to solve the problem of training dataset insufficiency, we designed the data augmentation strategy, Wasserstein generative adversarial network (WGAN), to increase the training dataset of MCAE. Experimental results conducted on both simulated, generated, and field datasets demonstrated that the proposed scheme has promising performance for image denoising. In terms of three indexes: the peak signal-to-noise ratio (PSNR), the time cost, and the structural similarity index (SSIM), the proposed scheme can achieve better performance of random noise suppression compared with the state-of-the-art competing methods (e.g., CAE, BM3D, WNNM).


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 319
Author(s):  
Yi Wang ◽  
Xiao Song ◽  
Guanghong Gong ◽  
Ni Li

Due to the rapid development of deep learning and artificial intelligence techniques, denoising via neural networks has drawn great attention due to their flexibility and excellent performances. However, for most convolutional network denoising methods, the convolution kernel is only one layer deep, and features of distinct scales are neglected. Moreover, in the convolution operation, all channels are treated equally; the relationships of channels are not considered. In this paper, we propose a multi-scale feature extraction-based normalized attention neural network (MFENANN) for image denoising. In MFENANN, we define a multi-scale feature extraction block to extract and combine features at distinct scales of the noisy image. In addition, we propose a normalized attention network (NAN) to learn the relationships between channels, which smooths the optimization landscape and speeds up the convergence process for training an attention model. Moreover, we introduce the NAN to convolutional network denoising, in which each channel gets gain; channels can play different roles in the subsequent convolution. To testify the effectiveness of the proposed MFENANN, we used both grayscale and color image sets whose noise levels ranged from 0 to 75 to do the experiments. The experimental results show that compared with some state-of-the-art denoising methods, the restored images of MFENANN have larger peak signal-to-noise ratios (PSNR) and structural similarity index measure (SSIM) values and get better overall appearance.


2021 ◽  
Vol 21 (1) ◽  
pp. 1-20
Author(s):  
A. K. Singh ◽  
S. Thakur ◽  
Alireza Jolfaei ◽  
Gautam Srivastava ◽  
MD. Elhoseny ◽  
...  

Recently, due to the increase in popularity of the Internet, the problem of digital data security over the Internet is increasing at a phenomenal rate. Watermarking is used for various notable applications to secure digital data from unauthorized individuals. To achieve this, in this article, we propose a joint encryption then-compression based watermarking technique for digital document security. This technique offers a tool for confidentiality, copyright protection, and strong compression performance of the system. The proposed method involves three major steps as follows: (1) embedding of multiple watermarks through non-sub-sampled contourlet transform, redundant discrete wavelet transform, and singular value decomposition; (2) encryption and compression via SHA-256 and Lempel Ziv Welch (LZW), respectively; and (3) extraction/recovery of multiple watermarks from the possibly distorted cover image. The performance estimations are carried out on various images at different attacks, and the efficiency of the system is determined in terms of peak signal-to-noise ratio (PSNR) and normalized correlation (NC), structural similarity index measure (SSIM), number of changing pixel rate (NPCR), unified averaged changed intensity (UACI), and compression ratio (CR). Furthermore, the comparative analysis of the proposed system with similar schemes indicates its superiority to them.


Sign in / Sign up

Export Citation Format

Share Document