SUB-ENTROPIES AND PHASE PROPERTIES UNDERGOING THE EFFECTS OF ATOMIC MOTION FOR THE JAYNES–CUMMINGS MODEL WITH INITIAL MIXED STATE INPUT

2006 ◽  
Vol 04 (05) ◽  
pp. 871-882 ◽  
Author(s):  
A.-S. F. OBADA ◽  
H. A. HESSIAN ◽  
A.-B. A. MOHAMED

An analytical method to calculate the sub-entropies and entanglement for the mixed state as an initial field is presented. Also, we investigate the effects of the atomic motion and the field-mode structure on sub-entropies and phase properties of the coherent superposition state and a statistical mixture of coherent states as initial field states taking into account different forms of the intensity-dependent coupling. The initial state, the atomic motion and the field-mode structure play important roles in the time evolution of the entropies, entanglement and phase properties.

2012 ◽  
Vol 10 (01) ◽  
pp. 1250007 ◽  
Author(s):  
NOUR ZIDAN ◽  
S. ABDEL-KHALEK ◽  
M. ABDEL-ATY

In this paper, we investigate the geometric phase of the field interacting with a moving four-level atom in the presence of Kerr medium. The results show that the atomic motion, the field-mode structure and Kerr medium play important roles in the evolution of the system dynamics. As illustration, we examine the behavior of the geometric phase and entanglement with experimentally accessible parameters. Some new aspects are observed and discussed.


2002 ◽  
Vol 16 (28n29) ◽  
pp. 1097-1106 ◽  
Author(s):  
A.-S. F. OBADA ◽  
H. A. HESSIAN

We investigate the influence of superposition of coherent states of light on population inversion and the evolution of the field entropy for two-level atoms in the framework of the Jaynes–Cummings model. We compare the behavior of the system in the case of having a coherent superposition state and a statistical mixture of coherent states as an initial field. Our results show that the superposition of coherent states plays an important role in the evolution of the field entropy in the intensity-dependent Jaynes–Cummings model (JCM).


1992 ◽  
Vol 06 (21) ◽  
pp. 3539-3550 ◽  
Author(s):  
AMITABH JOSHI ◽  
SURESH V. LAWANDE

We study the squeezing and the quasiprobability distribution Q-function for an extended two-photon Jaynes-Cummings model (JCM) that includes atomic motion and the field mode structure. A comparative study of this model with respect to the standard model (in which the atom is at rest) has been presented here to isolate the effect of limited atom-radiation interaction time.


Open Physics ◽  
2012 ◽  
Vol 10 (1) ◽  
Author(s):  
Yao-Hua Hu ◽  
Mao-Fa Fang

AbstractConsidering a double JC model, this paper investigates the quantum discord dynamics of two isolated moving two-level atoms each interacting with a single-mode thermal cavity field, and studies the effect of the atomic motion and the field-mode structure on quantumdiscord. The results show that, on the one hand the quantum discord evolves periodically with time and the periods are affected by the atomic motion and the field-mode structure; on the other hand, the quantum discord still can capture the quantum correlation between the two atoms when the entanglement is zero. It is interesting to note that the quantum discord can be effectively preserved by controlling the field-mode structure parameter


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Weiying Peng ◽  
Quanliang Chen ◽  
Shijie Zhou ◽  
Ping Huang

AbstractSeasonal forecasts at lead times of 1–12 months for sea surface temperature (SST) anomalies (SSTAs) in the offshore area of China are a considerable challenge for climate prediction in China. Previous research suggests that a model-based analog forecasting (MAF) method based on the simulations of coupled global climate models provide skillful climate forecasts of tropical Indo-Pacific SSTAs. This MAF method selects the model-simulated cases close to the observed initial state as a model-analog ensemble, and then uses the subsequent evolution of the SSTA to generate the forecasts. In this study, the MAF method is applied to the offshore area of China (0°–45°N, 105°–135°E) based on the simulations of 23 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) for the period 1981–2010. By optimizing the key factors in the MAF method, we suggest that the optimal initial field for the analog criteria should be concentrated in the western North Pacific. The multi-model ensemble of the optimized MAF prediction using these 23 CMIP6 models shows anomaly correlation coefficients exceeding 0.6 at the 3-month lead time, which is much improved relative to previous SST-initialized hindcasts and appears practical for operational forecasting.


2003 ◽  
Vol 42 (12) ◽  
pp. 2855-2862 ◽  
Author(s):  
Ji-Suo Wang ◽  
Tang-Kun Liu ◽  
Jian Feng ◽  
Jin-Zuo Sun ◽  
Ming-Sheng Zhan

2019 ◽  
Vol 17 (05) ◽  
pp. 1950043
Author(s):  
Panchi Li ◽  
Jiahui Guo ◽  
Bing Wang ◽  
Mengqi Hao

In this paper, we propose a quantum circuit for calculating the squared sum of the inner product of quantum states. The circuit is designed by the multi-qubits controlled-swapping gates, in which the initial state of each control qubit is [Formula: see text] and they are in the equilibrium superposition state after passing through some Hadamard gates. Then, according to the control rules, each basis state in the superposition state controls the corresponding quantum states pair to swap. Finally, the Hadamard gates are applied to the control qubits again, and the squared sum of the inner product of many pairs of quantum states can be obtained simultaneously by measuring only one control qubit. We investigate the application of this method in quantum images matching on a classical computer, and the experimental results verify the correctness of the proposed method.


1991 ◽  
Vol 157 (6-7) ◽  
pp. 330-334 ◽  
Author(s):  
Ts. Gantsog ◽  
R. Tanaś

Sign in / Sign up

Export Citation Format

Share Document