Stability Analysis of Smoothed Finite Element Methods with Explicit Method for Transient Heat Transfer Problems

2019 ◽  
Vol 17 (02) ◽  
pp. 1845005 ◽  
Author(s):  
Xin Rong ◽  
Ruiping Niu ◽  
Guirong Liu

In this paper, transient heat transfer problems are analyzed using the smoothed finite element methods (S-FEMs) with explicit time integration. For a numerical method with spatial discretization, the computational cost per time step in the explicit method is less than that in the implicit method, but the time step is much smaller in the explicit analysis than that in the implicit analysis when the same mesh is used. This is because the stability is of essential importance. This work thus studies the stability of S-FEMs, when applied to transient heat transfer problems. Relationships are established between the critical time steps used in S-FEMs with the maximum eigenvalues of the thermal stiffness (conduction) matrix and mass matrix. It is found that the critical time step relates to the “softness” of the model. For example, node-based smoothed finite element method (NS-FEM) is softer than edge-based smoothed finite element method (ES-FEM), which leads to that the critical time step of NS-FEM is larger than that of ES-FEM. Because computing the eigenvalues and condition numbers of the stiffness matrices is very expensive but valuable for stability analysis, we proposed a concise and effective algorithm to estimate the maximum eigenvalue and condition number. Intensive numerical examples show that our scheme for computing the critical time step can work accurately and stably for the explicit method in FEM and S-FEMs.

1978 ◽  
Vol 45 (2) ◽  
pp. 371-374 ◽  
Author(s):  
T. J. R. Hughes ◽  
W. K. Liu

A stability analysis is carried out for a new family of implicit-explicit finite-element algorithms. The analysis shows that unconditional stability may be achieved for the implicit finite elements and that the critical time step of the explicit elements governs for the system.


2007 ◽  
Vol 7 (3) ◽  
pp. 227-238 ◽  
Author(s):  
S.H. Razavi ◽  
A. Abolmaali ◽  
M. Ghassemieh

AbstractIn the proposed method, the variation of displacement in each time step is assumed to be a fourth order polynomial in time and its five unknown coefficients are calculated based on: two initial conditions from the previous time step; satisfying the equation of motion at both ends of the time step; and the zero weighted residual within the time step. This method is non-dissipative and its dispersion is considerably less than in other popular methods. The stability of the method shows that the critical time step is more than twice of that for the linear acceleration method and its convergence is of fourth order.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yong Xiao ◽  
Jianchun Guo ◽  
Hehua Wang ◽  
Lize Lu ◽  
John McLennan ◽  
...  

A coupled thermal-hydraulic-mechanical (THM) model is developed to simulate the combined effect of fracture fluid flow, heat transfer from the matrix to injected fluid, and shearing dilation behaviors in a coupled fracture-matrix hot volcanic reservoir system. Fluid flows in the fracture are calculated based on the cubic law. Heat transfer within the fracture involved is thermal conduction, thermal advection, and thermal dispersion; within the reservoir matrix, thermal conduction is the only mode of heat transfer. In view of the expansion of the fracture network, deformation and thermal-induced stress model are added to the matrix node’s in situ stress environment in each time step to analyze the stability of the matrix. A series of results from the coupled THM model, induced stress, and matrix stability indicate that thermal-induced aperture plays a dominant role near the injection well to enhance the conductivity of the fracture. Away from the injection well, the conductivity of the fracture is contributed by shear dilation. The induced stress has the maximum value at the injection point; the deformation-induced stress has large value with smaller affected range; on the contrary, thermal-induced stress has small value with larger affected range. Matrix stability simulation results indicate that the stability of the matrix nodes may be destroyed; this mechanism is helpful to create complex fracture networks.


Author(s):  
Ruifei Peng ◽  
Haitian Yang ◽  
Yanni Xue

A package solution is presented for the full-scale bounds estimation of temperature in the nonlinear transient heat transfer problems with small or large uncertainties. When the interval scale is relatively small, an efficient Taylor series expansion-based bounds estimation of temperature is stressed on the acquirement of first and second-order derivatives of temperature with high fidelity. When the interval scale is relatively large, an optimization-based approach in conjunction with a dimension-adaptive sparse grid (DSG) surrogate is developed for the bounds estimation of temperature, and the heavy computational burden of repeated deterministic solutions of nonlinear transient heat transfer problems can be efficiently alleviated by the DSG surrogate. A temporally piecewise adaptive algorithm with high fidelity is employed to gain the deterministic solution of temperature, and is further developed for recursive adaptive computing of the first and second-order derivatives of temperature. Therefore, the implementation of Taylor series expansion and the construction of DSG surrogate are underpinned by a reliable numerical platform. The parallelization is utilized for the construction of DSG surrogate for further acceleration. The accuracy and efficiency of the proposed approaches are demonstrated by two numerical examples.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Estaner Claro Romão

This paper proposes an efficient alternative to construction of the linear system coming from a solution via the Finite Element Method that is able to significantly decrease the time of construction of this system. From the presentation of the methodology used and a numerical application it will be clear that the purpose of this work is to be able to decrease 6-7 times (on average) the linear system building time.


Sign in / Sign up

Export Citation Format

Share Document