Numerical Investigation on the Water Entry of Convex Objects Using a Multiphase Smoothed Particle Hydrodynamics Model

2017 ◽  
Vol 15 (02) ◽  
pp. 1850008 ◽  
Author(s):  
L. Zou ◽  
G. X. Zhu ◽  
Z. Chen ◽  
Y. G. Pei ◽  
Z. Zong

In this paper, the hydrodynamic behaviors of a typical convex object during water entry are numerically investigated using a meshfree particle method, smoothed particle hydrodynamics (SPH). In order to consider the practical air-cushion effects during water–entry process, a multiphase model with interface force is incorporated to the SPH method to maintain sharp water–air interface. Three numerical examples including bubble rising, water impact on a flate plate and water entry of a wedge are firstly simulated to validate the effectiveness of the multiphase SPH method in predicting the slamming forces and trajectories of falling objects. Water entry of free falling convex objects with different shapes and sizes is then simulated using the validated numerical method for comparative studies. Two slamming processes, including the convex slamming and the structure slamming, are observed in simulations, with double-jetting pattern occurring after the structure slamming. The air-cushion effects are well captured with slamming-induced vortexes clearly shown in the simulation snapshots. Quantitatively, significant drop in pressure peak value is observed when the dimensionless width of the convex is larger than 0.2. Among various shapes of convexes, the square shaped convex experiences the minimal local pressure peak value.

Author(s):  
Roozbeh Saghatchi ◽  
Jafar Ghazanfarian ◽  
Mofid Gorji-Bandpy

This paper studies the two-dimensional water-entry and sedimentation of an elliptic cylinder using the subparticle scale (SPS) turbulence model of a Lagrangian particle-based smoothed-particle hydrodynamics (SPH) method. The motion of the body is driven by the hydrodynamic forces and the gravity. The present study shows the ability of the SPH method for the simulation of free-surface-involving and multiphase flow problems. The full Navier–Stokes equation, along with the continuity equation, have been solved as the governing equations of the problem. The accuracy of the numerical code is verified using the case of the water-entry and exit of a circular cylinder. The numerical simulations of the water-entry and sedimentation of the vertical and horizontal elliptic cylinder with the diameter ratio of 0.75 are performed at the Froude numbers of 0, 2, 5, and 8, and the specific gravities of 0.5, 0.75, 1, 1.5, 1.75, 2, and 2.5. The effect of the governing parameters and vortex shedding behind the elliptic cylinder on the trajectory curves, velocity components within the flow field, rotation angle, the velocity of ellipse, and the deformation of free-surface have been investigated in detail.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2314 ◽  
Author(s):  
Shu Wang ◽  
Anping Shu ◽  
Matteo Rubinato ◽  
Mengyao Wang ◽  
Jiping Qin

Non-homogeneous viscous debris flows are characterized by high density, impact force and destructiveness, and the complexity of the materials they are made of. This has always made these flows challenging to simulate numerically, and to reproduce experimentally debris flow processes. In this study, the formation-movement process of non-homogeneous debris flow under three different soil configurations was simulated numerically by modifying the formulation of collision, friction, and yield stresses for the existing Smoothed Particle Hydrodynamics (SPH) method. The results obtained by applying this modification to the SPH model clearly demonstrated that the configuration where fine and coarse particles are fully mixed, with no specific layering, produces more fluctuations and instability of the debris flow. The kinetic and potential energies of the fluctuating particles calculated for each scenario have been shown to be affected by the water content by focusing on small local areas. Therefore, this study provides a better understanding and new insights regarding intermittent debris flows, and explains the impact of the water content on their formation and movement processes.


2020 ◽  
Vol 105 (4) ◽  
pp. 1119-1147
Author(s):  
G. Chaussonnet ◽  
T. Dauch ◽  
M. Keller ◽  
M. Okraschevski ◽  
C. Ates ◽  
...  

AbstractThis paper illustrates recent progresses in the development of the smoothed particle hydrodynamics (SPH) method to simulate and post-process liquid spray generation. The simulation of a generic annular airblast atomizer is presented, in which a liquid sheet is fragmented by two concentric counter swirling air streams. The accent is put on how the SPH method can bridge the gap between the CAD geometry of a nozzle and its characterization, in terms of spray characteristics and dynamics. In addition, the Lagrangian nature of the SPH method allows to extract additional data to give further insight in the spraying process. First, the sequential breakup events can be tracked from one large liquid blob to very fine stable droplets. This is herein called the tree of fragmentation. From this tree of fragmentation, abstract quantities can be drawn such as the breakup activity and the fragmentation spectrum. Second, the Lagrangian coherent structures in the turbulent flow can be determined easily with the finite-time Lyapunov exponent (FTLE). The extraction of the FTLE is particularly feasible in the SPH framework. Finally, it is pointed out that there is no universal and ultimate non-dimensional number that can characterize airblast primary breakup. Depending on the field of interest, a non-dimensional number (e.g. Weber number) might be more appropriate than another one (e.g. momentum flux ratio) to characterize the regime, and vice versa.


2022 ◽  
Author(s):  
Binghui Cui ◽  
Liaojun Zhang

Abstract Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities, long jump distances, and poor predictability. Simulation of it facilitates propagation analysis and provides solutions for risk assessment and mitigation design. The smoothed particle hydrodynamics (SPH) method has been successfully applied to the simulation of two-dimensional (2D) and three-dimensional (3D) flow-like landslides. However, the influence of boundary resistance on the whole process of landslide failure is rarely discussed. In this study, a boundary algorithm considering the friction is proposed, and integrated into the boundary condition of the SPH method, and its accuracy is verified. Moreover, the Navier-Stokes equation combined with the non-Newtonian fluid rheology model was utilized to solve the dynamic behavior of the flow-like landslide. To verify its performance, the Shuicheng landslide event, which occurred in Guizhou, China, was taken as a case study. In the 2D simulation, a sensitivity analysis was conducted, and the results showed that the shearing strength parameters have more influence on the computation accuracy in comparison with the coefficient of viscosity. Afterwards, the dynamic characteristics of the landslide, such as the velocity and the impact area, were analyzed in the 3D simulation. The simulation results are in good agreement with the field investigations. The simulation results demonstrate that the SPH method performs well in reproducing the landslide process, and facilitates the analysis of landslide characteristics as well as the affected areas, which provides a scientific basis for conducting the risk assessment and disaster mitigation design.


2016 ◽  
Vol 846 ◽  
pp. 73-78 ◽  
Author(s):  
Maziar Gholami Korzani ◽  
S. Galindo Torres ◽  
Alexander Scheuermann ◽  
David J. Williams

The study concerns the application of the Smoothed Particle Hydrodynamics (SPH) method within the computational fluid dynamics (CFD). In the present study, some classical problems – the Poiseuille flow, the Hagen-Poiseuille flow, and the Couette flow – with the analytical solutions were investigated to verify a newly developed code of SPH. The code used for solving these problems, is an entirely parallel SPH solver in 3D and has been developed by the authors. Fluid was modelled as a viscous liquid with weak compressibility. The boundary walls were simulated with a special set of fixed boundary particles, and no-slip boundary condition was considered. Computational results were compared to available analytical solutions for transient hydraulic processes. Good agreement is achieved for the whole transient stage of the considered problems until steady state is reached. The results of this study highlight the potential of SPH to tackle a broad range of problems in fluid mechanics.


2012 ◽  
Vol 09 (04) ◽  
pp. 1250057
Author(s):  
S. WANG

In this paper, we propose a Galerkin-based smoothed particle hydrodynamics (SPH) formulation with moving least-squares meshless approximation, applied to solid mechanics and large deformation. Our method is truly meshless and based on Lagrangian kernel formulation and stabilized nodal integration. The performance of the methodology proposed is tested through various simulations, demonstrating the attractive ability of particle methods to handle severe distortions and complex phenomena.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Daming Li ◽  
Zhu Zhen ◽  
Hongqiang Zhang ◽  
Yanqing Li ◽  
Xingchen Tang

The smoothed particle hydrodynamics (SPH) method is applied to study the oil film diffusion in the water. By modifying the SPH equations of fluid dynamics, the multiphase flow SPH equations are obtained to establish the computational oil film diffusion model. By discussing three kinds of particle pairing schemes in the calculation of oil particle density, the redistribution mode of particle density is determined. The diffusion process of oil film is simulated, the effects of oil viscosity coefficient and particle density on oil film diffusion are analyzed, and the distribution of local pressure near oil particles in the process of oil film spreading is calculated. Finally, the calculated value of the oil film expansion diameter is compared with two other numerical models, and the calculated result shows a high coherence with the others.


1993 ◽  
Vol 153 ◽  
pp. 395-396
Author(s):  
T. Tsujimoto ◽  
K. Nomoto ◽  
T. Shigeyama ◽  
Y. Ishimaru

We simulate the chemical and dynamical evolution of the galactic bulge with the smoothed particle hydrodynamics (SPH) method. We calculate the early phase of galaxy formation in which the bulge is formed through a burst of star formation. The calculated abundance distribution function of stars in the bulge is consistent with the observations of bulge K giants, if the heavy element yields are three times larger than those expected from Salpeter's IMF.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Kai Gong ◽  
Songdong Shao ◽  
Hua Liu ◽  
Pengzhi Lin ◽  
Qinqin Gui

This paper presents a smoothed particle hydrodynamics (SPH) modeling technique based on the cylindrical coordinates for axisymmetrical hydrodynamic applications, thus to avoid a full three-dimensional (3D) numerical scheme as required in the Cartesian coordinates. In this model, the governing equations are solved in an axisymmetric form and the SPH approximations are modified into a two-dimensional cylindrical space. The proposed SPH model is first validated by a dam-break flow induced by the collapse of a cylindrical column of water with different water height to semi-base ratios. Then, the model is used to two benchmark water entry problems, i.e., cylindrical disk and circular sphere entry. In both cases, the model results are favorably compared with the experimental data. The convergence of model is demonstrated by comparing with the different particle resolutions. Besides, the accuracy and efficiency of the present cylindrical SPH are also compared with a fully 3D SPH computation. Extensive discussions are made on the water surface, velocity, and pressure fields to demonstrate the robust modeling results of the cylindrical SPH.


Sign in / Sign up

Export Citation Format

Share Document