Fluid–Solid Interaction Analysis on Iliac Bifurcation Artery: A Numerical Study

2019 ◽  
Vol 16 (07) ◽  
pp. 1850112 ◽  
Author(s):  
Ke Luo ◽  
Wentao Jiang ◽  
Chen Yu ◽  
Xiaobao Tian ◽  
Zhihong Zhou ◽  
...  

Atherosclerosis, which is commonly seen at regions with low wall shear stress (WSS) level in bifurcations, is a kind of fibro-fatty plaque accumulated on arterial walls. Aortic and iliac bifurcations have the highest proportion of patients among all atherosclerosis cases, thus it is necessary to numerically analyze the flow distribution and predict plaque positions in these bifurcations. Furthermore, using fluid–solid interaction (FSI) method could obtain a more exact flow pattern in arteries. In this study, a patient-specific model of aortic and iliac bifurcations was simulated with both FSI and rigid-wall cases. We analyzed the vessel deformation, WSS and flow distribution of this model. Computed tomography (CT) angiography was used in our study to create patient-specific model of aorto-iliac arteries. Real material properties and pulsatile fluid boundary conditions were applied in solid and fluid zones, respectively. We performed FSI and ordinary computational fluid dynamics (CFD) simulations with AYSYS 15.0 software (ANSYS Inc., Canonsburg, PA), and compared the diameter change, WSS and flow field between these two results. The diameter change between systolic phase and diastolic phase is 8–9% on abdominal aorta, and 3% on external and internal iliac arteries. The compliance of vessels corresponds to in-vivo observations. At peak systolic phase, the average WSS obtained in FSI simulation is 10% lower than in rigid-wall result, area of low-WSS region ([Formula: see text]) also increases by 78%. Wall deformation has a greater impact on WSS of those vessels with larger diameter, but hardly changes the shear level in smaller branches. Our result also shows that iliac bifurcations reveal more complicated secondary flow in systolic phase, comparing to other vessels, and stenosed iliac artery has more severe secondary flow than healthy artery. We obtained a feasible method for hemodynamic FSI research. The material parameters, boundary conditions and mesh could be used for further simulations, while the WSS and flow distribution may support clinical diagnosis and treatment. We concluded that compliance is a must-consider factor for simulating an accurate wall shear stress, because the vessel deformation in FSI simulation will significantly change the distribution of low-WSS zones. Moreover, more complicated secondary flow is detected in iliac arteries because it may interact between bifurcations. Stenosis in artery may also have a blocking effect on downstream blood flow.

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Parastou Eslami ◽  
Justin Tran ◽  
Zexi Jin ◽  
Julia Karady ◽  
Romina Sotoodeh ◽  
...  

Abstract Wall shear stress (WSS) has been shown to be associated with myocardial infarction (MI) and progression of atherosclerosis. Wall elasticity is an important feature of hemodynamic modeling affecting WSS calculations. The objective of this study was to investigate the role of wall elasticity on WSS, and justify use of either rigid or elastic models in future studies. Digital anatomic models of the aorta and coronaries were created based on coronary computed tomography angiography (CCTA) in four patients. Hemodynamics was computed in rigid and elastic models using a finite element flow solver. WSS in five timepoints in the cardiac cycle and time averaged wall shear stress (TAWSS) were compared between the models at each 3 mm subsegment and 4 arcs in cross sections along the centerlines of coronaries. In the left main (LM), proximal left anterior descending (LAD), left circumflex (LCX), and proximal right coronary artery (RCA) of the elastic model, the mean percent radial increase 5.95 ± 1.25, 4.02 ± 0.97, 4.08 ± 0.94, and 4.84 ± 1.05%, respectively. WSS at each timepoint in the cardiac cycle had slightly different values; however, when averaged over the cardiac cycle, there were negligible differences between the models. In both the subsegments (n = 704) and subarc analysis, TAWSS in the two models were highly correlated (r = 0.99). In investigation on the effect of coronary wall elasticity on WSS in CCTA-based models, the results of this study show no significant differences in TAWSS justifying using rigid wall models for future larger studies.


2020 ◽  
Vol 22 (2) ◽  
pp. 619-636 ◽  
Author(s):  
Zbigniew Tyfa ◽  
Damian Obidowski ◽  
Krzysztof Jóźwik

AbstractThe primary objective of this research can be divided into two separate aspects. The first one was to verify whether own software can be treated as a viable source of data for the Computer Aided Design (CAD) modelling and Computational Fluid Dynamics CFD analysis. The second aspect was to analyze the influence of the Ventricle Assist Device (VAD) outflow cannula positioning on the blood flow distribution in the brain-supplying arteries. Patient-specific model was reconstructed basing on the DICOM image sets obtained with the angiographic Computed Tomography. The reconstruction process was performed in the custom-created software, whereas the outflow cannulas were added in the SolidWorks software. Volumetric meshes were generated in the Ansys Mesher module. The transient boundary conditions enabled simulating several full cardiac cycles. Performed investigations focused mainly on volume flow rate, shear stress and velocity distribution. It was proven that custom-created software enhances the processes of the anatomical objects reconstruction. Developed geometrical files are compatible with CAD and CFD software – they can be easily manipulated and modified. Concerning the numerical simulations, several cases with varied positioning of the VAD outflow cannula were analyzed. Obtained results revealed that the location of the VAD outflow cannula has a slight impact on the blood flow distribution among the brain supplying arteries.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Fan He ◽  
Lu Hua ◽  
Tingting Guo

Abstract Background The effects of arterial wall compliance on blood flow have been revealed using fluid-structure interaction in last decades. However, microcirculation is not considered in previous researches. In fact, microcirculation plays a key role in regulating blood flow. Therefore, it is very necessary to involve microcirculation in arterial hemodynamics. Objective The main purpose of the present study is to investigate how wall compliance affects the flow characteristics and to establish the comparisons of these flow variables with rigid wall when microcirculation is considered. Methods We present numerical modeling in arterial hemodynamics incorporating fluid-structure interaction and microcirculation. A novel outlet boundary condition is employed to prescribe microcirculation in an idealised model. Results The novel finding in this work is that wall compliance under the consideration of microcirculation leads to the increase of wall shear stress in contrast to rigid wall, contrary to the traditional result that wall compliance makes wall shear stress decrease when a constant or time dependent pressure is specified at an outlet. Conclusions This work provides the valuable study of hemodynamics under physiological and realistic boundary conditions and proves that wall compliance may have a positive impact on wall shear stress based on this model. This methodology in this paper could be used in real model simulations.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gaoyang Li ◽  
Haoran Wang ◽  
Mingzi Zhang ◽  
Simon Tupin ◽  
Aike Qiao ◽  
...  

AbstractThe clinical treatment planning of coronary heart disease requires hemodynamic parameters to provide proper guidance. Computational fluid dynamics (CFD) is gradually used in the simulation of cardiovascular hemodynamics. However, for the patient-specific model, the complex operation and high computational cost of CFD hinder its clinical application. To deal with these problems, we develop cardiovascular hemodynamic point datasets and a dual sampling channel deep learning network, which can analyze and reproduce the relationship between the cardiovascular geometry and internal hemodynamics. The statistical analysis shows that the hemodynamic prediction results of deep learning are in agreement with the conventional CFD method, but the calculation time is reduced 600-fold. In terms of over 2 million nodes, prediction accuracy of around 90%, computational efficiency to predict cardiovascular hemodynamics within 1 second, and universality for evaluating complex arterial system, our deep learning method can meet the needs of most situations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xueping Chen ◽  
Jian Zhuang ◽  
Huanlei Huang ◽  
Yueheng Wu

AbstractThe purpose of this study is to compare the effect of the different physical factors on low-density lipoproteins (LDL) accumulation from flowing blood to the arterial wall of the left coronary arteries. The three-dimensional (3D) computational model of the left coronary arterial tree is reconstructed from a patient-specific computed tomography angiography (CTA) image. The endothelium of the coronary artery is represented by a shear stress dependent three-pore model. Fluid–structure interaction ($$FSI$$ FSI ) based numerical method is used to study the LDL transport from vascular lumen into the arterial wall. The results show that the high elastic property of the arterial wall decreases the complexity of the local flow field in the coronary bifurcation system. The places of high levels of LDL uptake coincide with the regions of low wall shear stress. In addition, hypertension promotes LDL uptake from flowing blood in the arterial wall, while the thickened arterial wall decreases this process. The present computer strategy combining the methods of coronary CTA image 3D reconstruction, $$FSI$$ FSI simulation, and three-pore modeling was illustrated to be effective on the simulation of the distribution and the uptake of LDL. This may have great potential for the early prediction of the local atherosclerosis lesion in the human left coronary artery.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mikołaj Zimny ◽  
Edyta Kawlewska ◽  
Anna Hebda ◽  
Wojciech Wolański ◽  
Piotr Ładziński ◽  
...  

Abstract Background Previously published computational fluid dynamics (CFD) studies regarding intracranial aneurysm (IA) formation present conflicting results. Our study analysed the involvement of the combination of high wall shear stress (WSS) and a positive WSS gradient (WSSG) in IA formation. Methods We designed a case-control study with a selection of 38 patients with an unruptured middle cerebral artery (MCA) aneurysm and 39 non-aneurysmal controls to determine the involvement of WSS, oscillatory shear index (OSI), the WSSG and its absolute value (absWSSG) in aneurysm formation based on patient-specific CFD simulations using velocity profiles obtained from transcranial colour-coded sonography. Results Among the analysed parameters, only the WSSG had significantly higher values compared to the controls (11.05 vs − 14.76 [Pa/mm], P = 0.020). The WSS, absWSSG and OSI values were not significantly different between the analysed groups. Logistic regression analysis identified WSS and WSSG as significant co-predictors for MCA aneurysm formation, but only the WSSG turned out to be a significant independent prognosticator (OR: 1.009; 95% CI: 1.001–1.017; P = 0.025). Significantly more patients (23/38) in the case group had haemodynamic regions of high WSS combined with a positive WSSG near the bifurcation apex, while in the control group, high WSS was usually accompanied by a negative WSSG (14/39). From the analysis of the ROC curve for WSSG, the area under the curve (AUC) was 0.654, with the optimal cut-off value −0.37 Pa/mm. The largest AUC was recognised for combined WSS and WSSG (AUC = 0.671). Our data confirmed that aneurysms tend to form near the bifurcation apices in regions of high WSS values accompanied by positive WSSG. Conclusions The development of IAs is determined by an independent effect of haemodynamic factors. High WSS impacts MCA aneurysm formation, while a positive WSSG mainly promotes this process.


Sign in / Sign up

Export Citation Format

Share Document