A REAL-TIME DETECTION ALGORITHM FOR VISION-BASED PEDESTRIAN PROTECTION

2008 ◽  
Vol 05 (01) ◽  
pp. 11-30 ◽  
Author(s):  
GUANGLIN MA ◽  
SU-BIRM PARK ◽  
ALEXANDER IOFFE ◽  
STEFAN MÜLLER-SCHNEIDERS ◽  
ANTON KUMMERT

This paper discusses the robust, real-time detection of stationary and moving pedestrians utilizing a single car-mounted monochrome camera. First, the system detects potential pedestrians above the ground plane by combining conventional Inverse Perspective Mapping (IPM)-based obstacle detection with the vertical 1D profile evaluation of the IPM detection result. Usage of the vertical profile increases the robustness of detection in low-contrast images as well as the detection of distant pedestrians significantly. A fast digital image stabilization algorithm is used to compensate for erroneous detections whenever the flat ground plane assumption is an inaccurate model of the road surface. Finally, a low-level pedestrian-oriented segmentation and fast symmetry search on the leg region of pedestrians is also presented. A novel approach termed Pedestrian Detection Strip (PDS) is used to improve the calculation time by a factor of six compared to conventional approaches.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhaoli Wu ◽  
Xin Wang ◽  
Chao Chen

Due to the limitation of energy consumption and power consumption, the embedded platform cannot meet the real-time requirements of the far-infrared image pedestrian detection algorithm. To solve this problem, this paper proposes a new real-time infrared pedestrian detection algorithm (RepVGG-YOLOv4, Rep-YOLO), which uses RepVGG to reconstruct the YOLOv4 backbone network, reduces the amount of model parameters and calculations, and improves the speed of target detection; using space spatial pyramid pooling (SPP) obtains different receptive field information to improve the accuracy of model detection; using the channel pruning compression method reduces redundant parameters, model size, and computational complexity. The experimental results show that compared with the YOLOv4 target detection algorithm, the Rep-YOLO algorithm reduces the model volume by 90%, the floating-point calculation is reduced by 93.4%, the reasoning speed is increased by 4 times, and the model detection accuracy after compression reaches 93.25%.


2021 ◽  
Vol 2002 (1) ◽  
pp. 012075
Author(s):  
Xianchang Xi ◽  
Zhikai Huang ◽  
Lingyi Ning ◽  
Yang Zhang

2020 ◽  
Vol 57 (20) ◽  
pp. 201009
Author(s):  
奚琦 Xi Qi ◽  
张正道 Zhang Zhengdao ◽  
彭力 Peng Li

2019 ◽  
Vol 9 (14) ◽  
pp. 2865 ◽  
Author(s):  
Kyungmin Jo ◽  
Yuna Choi ◽  
Jaesoon Choi ◽  
Jong Woo Chung

More than half of post-operative complications can be prevented, and operation performances can be improved based on the feedback gathered from operations or notifications of the risks during operations in real time. However, existing surgical analysis methods are limited, because they involve time-consuming processes and subjective opinions. Therefore, the detection of surgical instruments is necessary for (a) conducting objective analyses, or (b) providing risk notifications associated with a surgical procedure in real time. We propose a new real-time detection algorithm for detection of surgical instruments using convolutional neural networks (CNNs). This algorithm is based on an object detection system YOLO9000 and ensures continuity of detection of the surgical tools in successive imaging frames based on motion vector prediction. This method exhibits a constant performance irrespective of a surgical instrument class, while the mean average precision (mAP) of all the tools is 84.7, with a speed of 38 frames per second (FPS).


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yongchao Song ◽  
Jieru Yao ◽  
Yongfeng Ju ◽  
Yahong Jiang ◽  
Kai Du

In order to solve the problems of traffic object detection, fuzzification, and simplification in real traffic environment, an automatic detection and classification algorithm for roads, vehicles, and pedestrians with multiple traffic objects under the same framework is proposed. We construct the final V view through a considerate U-V view method, which determines the location of the horizon and the initial contour of the road. Road detection results are obtained through error label reclassification, omitting point reassignment, and so an. We propose a peripheral envelope algorithm to determine sources of vehicles and pedestrians on the road. The initial segmentation results are determined by the regional growth of the source point through the minimum neighbor similarity algorithm. Vehicle detection results on the road are confirmed by combining disparity and color energy minimum algorithms with the object window aspect ratio threshold method. A method of multifeature fusion is presented to obtain the pedestrian target area, and the pedestrian detection results on the road are accurately segmented by combining the disparity neighbor similarity and the minimum energy algorithm. The algorithm is tested in three datasets of Enpeda, KITTI, and Daimler; then, the corresponding results prove the efficiency and accuracy of the proposed approach. Meanwhile, the real-time analysis of the algorithm is performed, and the average time efficiency is 13 pfs, which can realize the real-time performance of the detection process.


Sign in / Sign up

Export Citation Format

Share Document