INTEGRABLE SYSTEMS DETERMINED BY DIFFERENTIAL FORMS FOR MOVING FRAMES ON IMMERSED SUBMANIFOLDS

2008 ◽  
Vol 05 (07) ◽  
pp. 1041-1049 ◽  
Author(s):  
PAUL BRACKEN

It is shown how a system of differential forms can reproduce the complete set of differential equations generated by an SO(m) matrix Lax pair. By selecting the elements in the given matrices appropriately, examples of integrable nonlinear equations can be produced. The SO(3) case is discussed in detail, then extended to an m - 1 dimensional manifold immersed in Euclidean space.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Samuel Abreu ◽  
Ruth Britto ◽  
Claude Duhr ◽  
Einan Gardi ◽  
James Matthew

Abstract The diagrammatic coaction maps any given Feynman graph into pairs of graphs and cut graphs such that, conjecturally, when these graphs are replaced by the corresponding Feynman integrals one obtains a coaction on the respective functions. The coaction on the functions is constructed by pairing a basis of differential forms, corresponding to master integrals, with a basis of integration contours, corresponding to independent cut integrals. At one loop, a general diagrammatic coaction was established using dimensional regularisation, which may be realised in terms of a global coaction on hypergeometric functions, or equivalently, order by order in the ϵ expansion, via a local coaction on multiple polylogarithms. The present paper takes the first steps in generalising the diagrammatic coaction beyond one loop. We first establish general properties that govern the diagrammatic coaction at any loop order. We then focus on examples of two-loop topologies for which all integrals expand into polylogarithms. In each case we determine bases of master integrals and cuts in terms of hypergeometric functions, and then use the global coaction to establish the diagrammatic coaction of all master integrals in the topology. The diagrammatic coaction encodes the complete set of discontinuities of Feynman integrals, as well as the differential equations they satisfy, providing a general tool to understand their physical and mathematical properties.


2014 ◽  
Vol 1 (2) ◽  
pp. 52-60
Author(s):  
V. Bulgakov ◽  
V. Adamchuk ◽  
H. Kaletnyk

The new design mathematical model of the sugar beet roots vibration digging-out process with the plowshare vibration digging working part has been created. In this case the sugar beet root is simulated as a solid body , while the plowshare vibration digging working part accomplishes fl uctuations in the longitudinal - vertical plane with the given amplitude and frequency in the process of work . The aim of the current research has been to determine the dependences between the design and kinematic parameters of the sugar beet roots vibra- tion digging-out technological process from soil , which provide the ir non-damage. Methods . For the aim ac- complishment, the methods of design mathematical models constructing based on the classical laws of me- chanics are applied. The solution of the obtained differential equations is accomplished with the PC involve- ment. Results . The differential equations of the sugar beet root’s motion in course of the vibration digging-out have been comprised . They allow to determine the admissible velocity of the vibration digging working part’s forward motion depending on the angular parameters of the latter. In the result of the computational simula- tion i.e., the solution of the obtained analytical dependence by PC, the graphic dependences of the admissible velocity of plowshare v ibration digging working part’s forward motion providing the extraction of the sugar beet root from soil without the breaking-off of its tail section have been determined. Conclusions . Due to the performed analytical research , it has been established that γ = 13 ... 16 ° , β = 20 ... 30 ° should be considered as the most reasonable values of γ and β angles of the vibration digging working part providing both its forward motion optimum speed and sugar beet root digging-out from the soil without damage . On the ground of the data obtained from the analytical rese arch, the new vibration digging working parts for the sugar beet roots have been designed; also the patents of Ukraine for the inventions have been obtained for them.


2018 ◽  
Vol 16 (1) ◽  
pp. 1519-1536
Author(s):  
Bashir Ahmad ◽  
Najla Alghamdi ◽  
Ahmed Alsaedi ◽  
Sotiris K. Ntouyas

AbstractWe introduce and study a new kind of nonlocal boundary value problems of multi-term fractional differential equations. The existence and uniqueness results for the given problem are obtained by applying standard fixed point theorems. We also construct some examples for demonstrating the application of the main results.


Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 40 ◽  
Author(s):  
Shumaila Javeed ◽  
Dumitru Baleanu ◽  
Asif Waheed ◽  
Mansoor Shaukat Khan ◽  
Hira Affan

The analysis of Homotopy Perturbation Method (HPM) for the solution of fractional partial differential equations (FPDEs) is presented. A unified convergence theorem is given. In order to validate the theory, the solution of fractional-order Burger-Poisson (FBP) equation is obtained. Furthermore, this work presents the method to find the solution of FPDEs, while the same partial differential equation (PDE) with ordinary derivative i.e., for α = 1 , is not defined in the given domain. Moreover, HPM is applied to a complicated obstacle boundary value problem (BVP) of fractional order.


Open Physics ◽  
2012 ◽  
Vol 10 (1) ◽  
Author(s):  
Hossein Jafari ◽  
Mohammad Saeidy ◽  
Dumitru Baleanu

AbstractThe variational iteration method (VIM) proposed by Ji-Huan He is a new analytical method for solving linear and nonlinear equations. In this paper, the variational iteration method has been applied in solving nth-order fuzzy linear differential equations with fuzzy initial conditions. This method is illustrated by solving several examples.


Sign in / Sign up

Export Citation Format

Share Document