On spacelike curves in hyperbolic space times sphere

2014 ◽  
Vol 11 (03) ◽  
pp. 1450014 ◽  
Author(s):  
Lingling Kong ◽  
Donghe Pei

The main goal of this paper is to study singularities of lightlike surfaces and focal surfaces of spacelike curves in Hyperbolic space times sphere. To do that, we construct a de Sitter height function and a Lightcone height function, and then show the relation between singularities of the lightlike surfaces (respectively, the focal surfaces) and that of the de Sitter height functions (respectively, the Lightcone height functions). In addition, some geometry properties of the spacelike curves are studied from geometric point of view.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yiming Chen ◽  
Victor Gorbenko ◽  
Juan Maldacena

Abstract We consider two dimensional CFT states that are produced by a gravitational path integral.As a first case, we consider a state produced by Euclidean AdS2 evolution followed by flat space evolution. We use the fine grained entropy formula to explore the nature of the state. We find that the naive hyperbolic space geometry leads to a paradox. This is solved if we include a geometry that connects the bra with the ket, a bra-ket wormhole. The semiclassical Lorentzian interpretation leads to CFT state entangled with an expanding and collapsing Friedmann cosmology.As a second case, we consider a state produced by Lorentzian dS2 evolution, again followed by flat space evolution. The most naive geometry also leads to a similar paradox. We explore several possible bra-ket wormholes. The most obvious one leads to a badly divergent temperature. The most promising one also leads to a divergent temperature but by making a projection onto low energy states we find that it has features that look similar to the previous Euclidean case. In particular, the maximum entropy of an interval in the future is set by the de Sitter entropy.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ryuya Namba

AbstractModerate deviation principles (MDPs) for random walks on covering graphs with groups of polynomial volume growth are discussed in a geometric point of view. They deal with any intermediate spatial scalings between those of laws of large numbers and those of central limit theorems. The corresponding rate functions are given by quadratic forms determined by the Albanese metric associated with the given random walks. We apply MDPs to establish laws of the iterated logarithm on the covering graphs by characterizing the set of all limit points of the normalized random walks.


Author(s):  
Qiang Zhao ◽  
Hong Tao Wu

This paper describes two aspects of multibody system (MBS) dynamics on a generalized mass metric in Riemannian velocity space and recursive momentum formulation. Firstly, we present a detailed expression of the Riemannian metric and operator factorization of a generalized mass tensor for the dynamics of general-topology rigid MBS. The derived expression allows a clearly understanding the components of the generalized mass tensor, which also constitute a metric of the Riemannian velocity space. It is being the fact that there does exist a common metric in Lagrange and recursive Newton-Euler dynamic equation, we can determine, from the Riemannian geometric point of view, that there is the equivalent relationship between the two approaches to a given MBS. Next, from the generalized momentum definition in the derivation of the Riemannian velocity metrics, recursive momentum equations of MBS dynamics are developed for progressively more complex systems: serial chains, topological trees, and closed-loop systems. Through the principle of impulse and momentum, a new method is proposed for reorienting and locating the MBS form a given initial orientation and location to desired final ones without needing to solve the motion equations.


CISM journal ◽  
1988 ◽  
Vol 42 (4) ◽  
pp. 321-330 ◽  
Author(s):  
P.J.G. Teunissen ◽  
E.H. Knickmeyer

Since almost all functional relations in our geodetic models are nonlinear, it is important, especially from a statistical inference point of view, to know how nonlinearity manifests itself at the various stages of an adjustment. In this paper particular attention is given to the effect of nonlinearity on the first two moments of least squares estimators. Expressions for the moments of least squares estimators of parameters, residuals and functions derived from parameters, are given. The measures of nonlinearity are discussed both from a statistical and differential geometric point of view. Finally, our results are applied to the 2D symmetric Helmert transformation with a rotational invariant covariance structure.


2017 ◽  
Vol 7 (1) ◽  
pp. 100 ◽  
Author(s):  
María José Beltrán Meneu ◽  
Marina Murillo Arcila ◽  
Enrique Jordá Mora

In this work, we present a teaching proposal which emphasizes on visualization and physical applications in the study of eigenvectors and eigenvalues. These concepts are introduced using the notion of the moment of inertia of a rigid body and the GeoGebra software. The proposal was motivated after observing students’ difficulties when treating eigenvectors and eigenvalues from a geometric point of view. It was designed following a particular sequence of activities with the schema: exploration, introduction of concepts, structuring of knowledge and application, and considering the three worlds of mathematical thinking provided by Tall: embodied, symbolic and formal.


2019 ◽  
Vol 17 (06) ◽  
pp. 1950077 ◽  
Author(s):  
Sheng-Tong Zhou ◽  
Qian Xiao ◽  
Jian-Min Zhou ◽  
Hong-Guang Li

Rackwitz–Fiessler (RF) method is well accepted as an efficient way to solve the uncorrelated non-Normal reliability problems by transforming original non-Normal variables into equivalent Normal variables based on the equivalent Normal conditions. However, this traditional RF method is often abandoned when correlated reliability problems are involved, because the point-by-point implementation property of equivalent Normal conditions makes the RF method hard to clearly describe the correlations of transformed variables. To this end, some improvements on the traditional RF method are presented from the isoprobabilistic transformation and copula theory viewpoints. First of all, the forward transformation process of RF method from the original space to the standard Normal space is interpreted as the isoprobabilistic transformation from the geometric point of view. This viewpoint makes us reasonably describe the stochastic dependence of transformed variables same as that in Nataf transformation (NATAF). Thus, a corresponding enhanced RF (EnRF) method is proposed to deal with the correlated reliability problems described by Pearson linear correlation. Further, we uncover the implicit Gaussian copula hypothesis of RF method according to the invariant theorem of copula and the strictly increasing isoprobabilistic transformation. Meanwhile, based on the copula-only rank correlations such as the Spearman and Kendall correlations, two improved RF (IRF) methods are introduced to overcome the potential pitfalls of Pearson correlation in EnRF. Later, taking NATAF as a reference, the computational cost and efficiency of above three proposed RF methods are also discussed in Hasofer–Lind reliability algorithm. Finally, four illustrative structure reliability examples are demonstrated to validate the availability and advantages of the new proposed RF methods.


Author(s):  
D. Huybrechts

This book provides a systematic exposition of the theory of Fourier-Mukai transforms from an algebro-geometric point of view. Assuming a basic knowledge of algebraic geometry, the key aspect of this book is the derived category of coherent sheaves on a smooth projective variety. The derived category is a subtle invariant of the isomorphism type of a variety, and its group of autoequivalences often shows a rich structure. As it turns out — and this feature is pursued throughout the book — the behaviour of the derived category is determined by the geometric properties of the canonical bundle of the variety. Including notions from other areas, e.g., singular cohomology, Hodge theory, abelian varieties, K3 surfaces; full proofs and exercises are provided. The final chapter summarizes recent research directions, such as connections to orbifolds and the representation theory of finite groups via the McKay correspondence, stability conditions on triangulated categories, and the notion of the derived category of sheaves twisted by a gerbe.


Sign in / Sign up

Export Citation Format

Share Document