Symmetry analysis and invariant solutions of (3 + 1)-dimensional Kadomtsev–Petviashvili equation

2018 ◽  
Vol 15 (08) ◽  
pp. 1850125 ◽  
Author(s):  
Vishakha Jadaun ◽  
Sachin Kumar

Based on Lie symmetry analysis, we study nonlinear waves in fluid mechanics with strong spatial dispersion. The similarity reductions and exact solutions are obtained based on the optimal system and power series method. We obtain the infinitesimal generators, commutator table of Lie algebra, symmetry group and similarity reductions for the [Formula: see text]-dimensional Kadomtsev–Petviashvili equation. For different Lie algebra, Lie symmetry method reduces Kadomtsev–Petviashvili equation into various ordinary differential equations (ODEs). Some of the solutions of [Formula: see text]-dimensional Kadomtsev–Petviashvili equation are of the forms — traveling waves, Weierstrass’s elliptic and Zeta functions and exponential functions.

2019 ◽  
Vol 27 (2) ◽  
pp. 171-185 ◽  
Author(s):  
Astha Chauhan ◽  
Rajan Arora

AbstractIn this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation laws are determined for the time fractional Kupershmidt equation with the help of new conservation theorem and fractional Noether operators. The explicit analytic solutions of fractional Kupershmidt equation are obtained using the power series method. Also, the convergence of the power series solutions is discussed by using the implicit function theorem.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gang-Wei Wang ◽  
Tian-Zhou Xu

The simplified modified Kawahara equation with variable coefficients is studied by using Lie symmetry method. Then we obtain the corresponding Lie algebra, optimal system, and the similarity reductions. At last, we also give some new explicit solutions for some special forms of the equations.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 170 ◽  
Author(s):  
Amjad Hussain ◽  
Shahida Bano ◽  
Ilyas Khan ◽  
Dumitru Baleanu ◽  
Kottakkaran Sooppy Nisar

In this paper, we investigate a spatially two-dimensional Burgers–Huxley equation that depicts the interaction between convection effects, diffusion transport, reaction gadget, nerve proliferation in neurophysics, as well as motion in liquid crystals. We have used the Lie symmetry method to study the vector fields, optimal systems of first order, symmetry reductions, and exact solutions. Furthermore, using the power series method, a set of series solutions are obtained. Finally, conservation laws are derived using optimal systems.


2021 ◽  
Vol 6 (11) ◽  
pp. 12148-12165
Author(s):  
Mobeen Munir ◽  
◽  
Muhammad Athar ◽  
Sakhi Sarwar ◽  
Wasfi Shatanawi ◽  
...  

<abstract><p>Lie symmetry analysis of differential equations proves to be a powerful tool to solve or atleast to reduce the order and non-linearity of the equation. The present article focuses on the solution of Generalized Equal Width wave (GEW) equation using Lie group theory. Over the years, different solution methods have been tried for GEW but Lie symmetry analysis has not been done yet. At first, we obtain the infinitesimal generators, commutation table and adjoint table of Generalized Equal Width wave (GEW) equation. After this, we find the one dimensional optimal system. Then we reduce GEW equation into non-linear ordinary differential equation (ODE) by using the Lie symmetry method. This transformed equation can take us to the solution of GEW equation by different methods. After this, we get the travelling wave solution of GEW equation by using the Sine-cosine method. We also give graphs of some solutions of this equation.</p></abstract>


2017 ◽  
Vol 31 (30) ◽  
pp. 1750275 ◽  
Author(s):  
Yehui Huang ◽  
Wei Li ◽  
Guo Wang ◽  
Xuelin Yong

The deformed KdV equation is a generalization of the classical equation that can describe the motion of the interaction between different solitary waves. In this paper, the Lie symmetry analysis is performed on the deformed KdV equation. The similarity reductions and exact solutions are obtained based on the optimal system method. The exact analytic solutions are considered by using the power series method. The conservation laws for the deformed KdV equation are presented. Finally, the analytic solutions are given and their dynamics are studied.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Maria Ihsane El Bahi ◽  
Khalid Hilal

In this paper, the problem of constructing the Lie point symmetries group of the nonlinear partial differential equation appeared in mathematical physics known as the generalized KdV-Like equation is discussed. By using the Lie symmetry method for the generalized KdV-Like equation, the point symmetry operators are constructed and are used to reduce the equation to another fractional ordinary differential equation based on Erdélyi-Kober differential operator. The symmetries of this equation are also used to construct the conservation Laws by applying the new conservation theorem introduced by Ibragimov. Furthermore, another type of solutions is given by means of power series method and the convergence of the solutions is provided; also, some graphics of solutions are plotted in 3D.


Author(s):  
Sachin Kumar ◽  
Monika Niwas ◽  
Ihsanullah Hamid

The prime objective of this paper is to obtain the exact soliton solutions by applying the two mathematical techniques, namely, Lie symmetry analysis and generalized exponential rational function (GERF) method to the (2+1)-dimensional generalized Camassa–Holm–Kadomtsev–Petviashvili (g-CHKP) equation. First, we obtain Lie infinitesimals, possible vector fields, and commutative product of vectors for the g-CHKP equation. By the means of symmetry reductions, the g-CHKP equation reduced to various nonlinear ODEs. Subsequently, we implement the GERF method to the reduced ODEs with the help of computerized symbolic computation in Mathematica. Some abundant exact soliton solutions are obtained in the shapes of different dynamical structures of multiple-solitons like one-soliton, two-soliton, three-soliton, four-soliton, bell-shaped solitons, lump-type soliton, kink-type soliton, periodic solitary wave solutions, trigonometric function, hyperbolic trigonometric function, exponential function, and rational function solutions. Consequently, the dynamical structures of attained exact analytical solutions are discussed through 3D-plots via numerical simulation. A comparison with other results is also presented.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Mehdi Nadjafikhah ◽  
Vahid Shirvani-Sh

The Lie symmetry method is performed for the fifth-order nonlinear evolution Kudryashov-Sinelshchikov equation. We will find ones and two-dimensional optimal systems of Lie subalgebras. Furthermore, preliminary classification of its group-invariant solutions is investigated.


2018 ◽  
Vol 32 (31) ◽  
pp. 1850383 ◽  
Author(s):  
Xuan Zhou ◽  
Wenrui Shan ◽  
Zhilei Niu ◽  
Pengcheng Xiao ◽  
Ying Wang

In this study, the Lie symmetry method is used to perform detailed analysis on the modified Zakharov–Kuznetsov equation. We have obtained the infinitesimal generators, commutator table of Lie algebra and symmetry group. In addition to that, optimal system of one-dimensional subalgebras up to conjugacy is derived and used to construct distinct exact solutions. These solutions describe the dynamics of nonlinear waves in isothermal multicomponent magnetized plasmas.


Sign in / Sign up

Export Citation Format

Share Document